SUPPLEMENTARY MATERIAL ### **Supplemental Table S1: Search Strategy** | Database: Cochrane lil
Search no. | Search parameters | Results | |--------------------------------------|---|---------| | 1. | exp Coronary Occlusion/ | 104 | | 2. | (chronic adj2 total adj2 occlusion*).mp. | 362 | | 3. | 1 or 2 | 420 | | 4. | exp Percutaneous Coronary Intervention/ | 5087 | | 5. | percutaneous coronary intervention*.mp. | 8996 | | 6. | exp Stents/ | 3853 | | 7. | stent*.mp. | 14170 | | 8. | exp Drug-Eluting Stents/ | 1249 | | 9. | drug-eluting stent*.mp. | 3368 | | 10. | exp Angioplasty/ | 4326 | | 11. | angioplasty.mp. | 8642 | | 12. | or/4-11 | 23273 | | 13. | 3 and 12 | 350 | | 14. | limit 13 to English language | 297 | | 15. | limit 14 to yr="2005 -Current" | 275 | | Database: MEDLINE/ | | · | | Search no. | Search parameters | Results | | 1. | exp Coronary Occlusion/ | 2902 | | 2. | (chronic adj2 total adj2 occlusion*).mp. | 2934 | | 3. | 1 or 2 | 4762 | | 4. | exp Percutaneous Coronary Intervention/ | 49113 | | 5. | percutaneous coronary intervention*.mp. | 35471 | | 6. | exp Stents/ | 71705 | | 7. | stent*.mp. | 106571 | | 8. | exp Drug-Eluting Stents/ | 10191 | | 9. | drug-eluting stent*.mp. | 14518 | | 10. | exp Angioplasty/ | 59885 | | 11. | angioplasty.mp. | 74272 | | 12. | or/4-11 | 167656 | | 13. | 3 and 12 | 3103 | | 14. | limit 13 to (English language and humans) | 2522 | | 15. | limit 14 to yr="2005 -Current" | 2272 | | Database: Embase | • | • | | Search no. | Search parameters | Results | | 1. | exp Coronary Occlusion/ | 1876 | | 2. | (chronic adj2 total adj2 occlusion*).mp. | 6139 | | 3. | 1 or 2 | 6139 | | 4. | exp Percutaneous Coronary Intervention/ | 92218 | | 5. | percutaneous coronary intervention*.mp. | 75399 | | 6. | exp Stents/ | 48990 | | 7. | stent*.mp. | 192807 | | 8. | exp Drug-Eluting Stents/ | 30734 | | 9. | drug-eluting stent*.mp. | 29821 | | 10. | exp Angioplasty/ | 85257 | | 11. | angioplasty.mp. | 93309 | | 12. | or/4-11 | 290478 | | 13. | 3 and 12 | 5072 | | 14. | limit 13 to (English language and humans) | 4440 | | 15. | limit 14 to yr="2005 -Current" | 4161 | | | | | ### **Supplemental Table S2: Overview of Included Studies** | Study name
(Author name) | Year of publication | Country | Study type and design | Number
of
patients | Primary
outcomes | Secondary
outcomes | Follow up
duration
(median or
mean) | |--|---------------------|-----------|---------------------------------------|--------------------------|--|--|--| | | | | Single Arm S | tudies | | | | | | | | Antegrade App | oroach | | | | | Chronic total occlusion - percutaneous coronary intervention (CTO-PCI) experience in a single, multi-operator Australian centre: Need for dedicated CTO-PCI programs (BogannaShanmugam et al) (24) | 2016 | Australia | Retrospective
Cohort | 82 | Procedural
success; and In-
hospital
outcomes
including all-
cause death, MI
and emergency
CABG. | Coronary perforation requiring pericardiocentesis or other intervention; stent thrombosis as per Academic Research Consortium (ARC) criteria; bleeding requiring blood product transfusion; stroke; access site vascular complications; and contrast- induced nephropathy. | | | Angiographic
predictors of success
in antegrade
approach (KS et al)
(25) | 2017 | India | Single center
retrospective cohort | 210 | - | - | 6 months | | Outcomes of
percutaneous
antegrade
intraluminal coronary
intervention of
chronic total
occlusion with remote
surgical backup
(Akinseye et al) (26) | 2018 | USA | Retrospective cohort | 18 | Cardiac death,
myocardial
infarction, target
vessel
revascularization,
heart failure,
stroke, and
rehospitalization | - | 19.5 months | | | | | Retrograde Ap | proach | | | | | The retrograde
coronary approach
for chronic total
occlusions: mid-term
results and technical
tips & tricks (Sheiban
et al) (27) | 2007 | Italy | Retrospective cohort | 18 | Wiring,
angiographic,
and procedural
success, long
term MACE | | 15 months | | European experience with the retrograde approach for the recanalization of coronary artery CTOs; a report on behalf of the EuroCTO club (Sianos et al) (28) | 2008 | Europe | Prospective cohort | 175 | - | - | - | | Initial Experience of
Retrograde Wire
Approach | 2009 | Korea | Single center prospective study | 61 | - | - | - | | in Coronary Chronic
Total Occlusion
Intervention (Suk et
al) (29) | | | | | | | | |---|------|--------|--|------|---------------------------|---|-------------| | Retrograde
percutaneous
recanalization of
chronic total
occlusion of the
coronary (Rathore et
al) (30) | 2009 | Japan | Retrospective Study | 157 | - | | - | | Retrograde approach
for the recanalization
of CTO: preliminary
experience of a single
center (Ge et al) (31) | 2010 | China | - | 42 | - | - | 30 days | | Recanalization
strategy of retrograde
angioplasty in
patients with
coronary chronic total
occlusion - Analysis of
24 cases, focusing on
technical aspects and
complications (Lee et
al) (32) | 2010 | Korea | Retrospective cohort | 22 | - | - | 309 days | | Retrograde coronary
chronic total
occlusion
revascularization
(Karmpaliotis et al)
(33) | 2012 | USA | Prospective cohort | 462 | - | - | - | | Efficiency, safety, and long-term follow-up of retrograde approach for CTO recanalization: initial (Belgrade) experience with international proctorship (Stojkovic et al) (34) | 2012 | Serbia | Retrospective
Registry | 40 | - | - | 20 months | | Changing strategies of
the retrograde
approach for chronic
total occlusion during
the past 7 years
(Muramatsu et al)
(35) | 2013 | Japan | Retrospective cohort | 281 | Success rate and outcomes | - | - | | Retrograde approach
for the recanalization
of coronary chronic
total occlusion:
collateral selection
and collateral related
complication (Ma et
al) (36) | 2013 | China | - | 84 | _ | _ | - | | Japanese multicenter
registry evaluating
the retrograde
approach for chronic
coronary total
occlusion (Tsuchikane
et al) (37) | 2013 | Japan | Multicenter
retrospective
registry | 801 | - | - | - | | Retrograde
recanalization of
chronic total
occlusions in Europe
(Galassi et al) (38) | 2015 | Europe | - | 1395 | - | - | 24.7 months | | Retrograde chronic
total occlusion
percutaneous
coronary intervention
through ipsilateral
collateral channels
(Azzalini et al) (39) | 2017 | Europe | Retrospective
Cohort | 126 | Success rate,
procedural
complications,
in-hospital
outcomes | - | - | |--|------|--|--|----------|--|---|-----------------| | | | | Dissection re-entry | Approach | | | | | Treating chronic total occlusions using subintimal tracking and re-entry (Colombo et al) (40) | 2005 | - | - | 31 | - | - | 5.1 months | | Comparison between traditional and guide catheter extension reverse controlled antegrade dissection and retrograde tracking: insights from the PROGRESS-CTO registry (Xenogiannis et al) (41) | 2019 | USA/Europ
e/Russia | - | 467 | - | _ | - | | | | | Asian-Pacific al | gorithm | | | | | Procedure failure of chronic total occlusion percutaneous coronary intervention in an algorithm driven contemporary Asia-Pacific Chronic Total Occlusion Club (APCTO Club) multicenter (Chan et al) (42) | 2019 | China,
Hong
Kong,
Korea,
Japan,
Taiwan,
Singapore,
New
Zealand,
Australia | Prospective cohort | 485 | - | | - | | | | | Hybrid Appr | oach | | | | | The safety and efficacy of the hybrid approach to chronic total occlusions: Insights from a contemporary multicenter US registry (Menon et al) (43) | 2013 | USA | | 287 | Technical
success,
procedural
complications | - | No long
term | | Application of the
hybrid approach to
chronic total
occlusions in patients
with previous CABG
(Christopoulos et al)
(44) | 2014 | USA | - | 496 | Procedural
success,
procedural
complications | - | No long
term | | The efficacy and safety of the hybrid approach to coronary chronic total occlusions: insights from a contemporary multicenter US registry and comparison with prior studies (Christopoulos, et al) (45) | 2014 | USA | Mixed
Prospective/Retrosp
ective | 497 | Procedural
success,
procedural
complications | - | No long
term | | The efficacy of hybrid
percutaneous
coronary intervention
in chronic total
occlusions caused by
in stent restenosis
(Christopoulos, et
al)
(46) | 2014 | USA | Mixed
Prospective/Retrosp
ective | 521 | Procedural
success,
procedural
complications | - | No long
term | |---|------|--------|--|------------------------|--|--|-----------------| | Application of the "hybrid approach" to chronic total occlusion interventions: a detailed procedural analysis (Michael, et al) (47) | 2014 | USA | Prospective Cohort | 73 | Procedural
success,
procedural
complications | - | No long
term | | Dissection and re-
entry techniques and
longer-term outcomes
following successful
percutaneous
coronary intervention
of chronic total
occlusion (Rinfret, et
al) (48) | 2014 | Canada | Prospective Cohort | 187 | Combined incidence of cardiac death, MI, ischemia driven target vessel revascularization, or re-occlusion | Incidence of recurrent residual angina | 398 days | | Application and outcomes of a hybrid approach to chronic total occlusion percutaneous coronary intervention in a contemporary multicenter US registry (Christopoulos, et al) (49) | 2015 | USA | Mixed
Prospective/Retrosp
ective | 1019
(1036
CTOs) | Procedural
success,
procedural
complications | - | No long
term | | Procedural failure of
chronic total
occlusion
percutaneous
coronary
intervention: Insights
from a multicenter
US registry (Sapontis,
et al) (50) | 2015 | USA | Mixed
Prospective/Retrosp
ective | 380 | Procedural
success,
procedural
complications | - | No long
term | | Adoption of the
hybrid CTO
approach by a single
non-CTO operator:
procedural and
clinical outcomes (Vo,
et al) (51) | 2015 | - | Retrospective
Cohort | 48 (50
CTOs) | Procedural
success,
procedural
complications | - | No long
term | | Impact of Crossing Strategy on Intermediate Term Outcomes After Chronic Total Occlusion Percutaneous Coronary Intervention (Amsavelu, et al) (52) | 2016 | USA | Mixed
Prospective/Retrosp
ective | 173 | Procedural
success, long
term
complications
including
incidence of
death at various
follow up periods | - | 36 months | | Hybrid approach
improves success of
chronic total
occlusion angioplasty
(Wilson, et al) (53) | 2016 | UK | - | 1156 | Procedural
success,
procedural
complications,
complications on
follow up | - | 20 days | | Further validation of
the hybrid algorithm
for CTO PCI;
difficult lesions, same
success (Basir et al)
(54) | 2017 | USA | Prospective Cohort | 270 (279
CTOs) | Procedural success | - | No long
term | |---|------|------------------------|--|------------------------|---|---|-----------------| | Outcomes of the retrograde approach through epicardial versus non-epicardial collaterals in chronic total occlusion percutaneous coronary intervention (Benincasa et al) (55) | 2017 | Italy | Prospective Cohort | 75 | MACE on follow
up | - | 433 days | | Safety and efficacy of
the hybrid approach
in coronary chronic
total occlusion
percutaneous
coronary
intervention: the
hybrid video registry
(Daniels et al) (56) | 2017 | USA/UK | Prospective Cohort? | 194 | - | - | No long
term | | Retrograde approach is as effective and safe as antegrade approach in contemporary percutaneous coronary intervention for chronic total occlusion: Taiwan Single Center Registry (Lee et al) (57) | 2017 | Taiwan | Prospective Cohort | 321 | Technical
success,
procedural
complications | - | No long
term | | Early procedural and health status outcomes after chronic total occlusion angioplasty: a report from the OPEN-CTO registry (Outcomes, patient health status, and efficiency in chronic total occlusion hybrid procedures) (Sapontis et al) (58) | 2017 | | Prospective Cohort | 1000
(1054
CTOs) | Procedural
success,
complications on
follow up | - | 1 month | | The outcomes, patient
health status, and
efficiency in chronic
total occlusion hybrid
procedures registry:
rationale and design
(Sapontis et al) (59) | 2017 | - | Prospective Cohort | 1000
(1096
CTOs) | Procedural
success,
procedural
complications | - | No long
term | | One-year outcomes
after successful
chronic total
occlusion
percutaneous
coronary intervention
(Wilson et al) (60) | 2017 | UK | - | 805 | Procedural
success,
procedural
complications,
complications on
follow up | - | 12 months | | Assessing the landscape of percutaneous coronary chronic total occlusion treatment in Belgium and | 2018 | Belgium/Lu
xembourg | Mixed
Prospective/Retrosp
ective | 388 (411
CTOs) | Technical
success,
procedural
complications | - | No long
term | | Luxembourg: the
Belgian working
group on chronic total
occlusions registry
(Maeremans et al)
(61) | | | | | | | | |---|------|-----------------------|-------------------------|------------------------|---|---|-----------------| | One-year clinical outcomes of the hybrid CTO revascularization strategy after hospital discharge: A subanalysis of the multicenter RECHARGE registry (Maeremans et al) (62) | 2018 | Europe | Prospective Cohort | 1067
(1253
CTOs) | Technical
success,
procedural
complications,
MACE at 1 year | - | 12 months | | The hybrid approach
to chronic total
occlusion
percutaneous
coronary
intervention: Update
from the PROGRESS
CTO registry (Tajti,
et al) (63) | 2018 | USA/Russi
a/Europe | - | 3055
(3122
CTOs) | Procedural
success,
procedural
complications | - | No long
term | | | | | Unclassified Ap | proach | | | | | Coronary septal
collaterals as an
access for the
retrograde approach
in the percutaneous
treatment of coronary
chronic total
occlusions (Surmely,
et al) (64) | 2007 | Japan | Prospective Cohort | 21 | - | - | No long
term | | Procedural and in-
hospital outcomes
after percutaneous
coronary intervention
for chronic total
occlusions of coronary
arteries 2002 to 2008.
Impact of novel
guidewire techniques
(Rathore, et al) (65) | 2009 | Japan | Retrospective
Cohort | 806 (904
CTOs) | Procedural
success,
procedural
complications | - | No long
term | | Validation of J-
chronic total
occlusion score for
chronic total
occlusion
percutaneous
coronary intervention
in an independent
contemporary cohort
(Nombela-Franco, et
al) (66) | 2013 | Canada | Prospective Cohort | 209 | Procedural
success, JCTO
classification | - | No long
term | | Long-term clinical
and angiographic
outcomes of the mini-
STAR technique as a
bailout strategy for
percutaneous
coronary intervention
of chronic total
occlusion (Galassi, et
al) (67) | 2014 | Italy | Retrospective
Cohort | 100 | Procedural
success, event
free survival | - | 2 years | | Complications during
retrograde approach
for chronic coronary
total occlusion
(Okamura, et al) (68) | 2015 | Japan | Prospective Cohort | 1166 | Procedural
success,
procedural
complications | - | No long
term | |---|------|---------|------------------------------------|-----------------------------|---|---|-----------------| | Clinical prediction
score for successful
retrograde procedure
in chronic total
occlusion
percutaneous
coronary intervention
(Chai, et al) (69) | 2016 | China | Retrospective
Cohort | 223 (228
CTO
lesions) | Procedural
success,
independent
predictors of
success | - | No long
term | | Chronic total
coronary occlusion:
treatment results
(Christensen, et al)
(70) | 2017 | Denmark | Retrospective
Cohort | 503 (594
CTOs) | Procedural success, procedural complications, adverse events at 3 months, CCS/NYHA class assessment at 3 months | | 3 months | | | | | Double Arm S | Studies | | | | | | | A | ntegrade vs Retrogr | ade Approa | ch | | | | In-hospital outcomes
of percutaneous
coronary intervention
in patients with
chronic total
occlusion: insights
from the ERCTO
(European Registry of
Chronic Total
Occlusion) registry
(Galassi et al) (71) | 2011 | Europe | Multicenter prospective registry | 1914 | Rate of
procedural
success | Procedural time, fluoroscopy time, contrast volume load, periprocedural complications (such as coronary perforation, CIN and MI) and
inhospital MACE. | 3 years | | Long-Term outcomes of successful chronic total occlusion percutaneous coronary interventions using the antegrade and retrograde approach (Michael et al) (72) | 2014 | USA | Single center retrospective study | 193 | TLR | All-cause
mortality, MI,
TVR, non-target
vessel
revascularization,
any
revascularization,
and CABG. | 2 years | | Long-term major adverse cardiac and cerebrovascular events (MACCE) rate: Comparison of retrograde and antegrade recanalization of chronic total coronary occlusions (Bijuklic et al) (73) | 2016 | Germany | Single center prospective registry | 396 | Long term
MACCE | - | 2.3 years | | Outcomes with the Use of the Retrograde Approach for Coronary Chronic Total Occlusion Interventions in a Contemporary Multicenter US Registry (Karmapaliotis et al) (74) | 2016 | USA | Multicenter
prospective study | 1276 | - | - | - | | Impact of crossing technique on the incidence of periprocedural myocardial infarction during chronic total occlusion percutaneous coronary intervention (Stetler et al) (75) | 2016 | USA | Single center retrospective study | 184 - | - | - | |---|------|-------|-----------------------------------|---------------|---|----------| | Outcomes of
Percutaneous
Coronary
Interventions for
Chronic Total
Occlusion Performed
by Highly
Experienced Japanese
Specialists
(Suzuki et al) (76) | 2017 | Japan | Multicenter prospective registry | 2596 - | - | - | | | | A | ntegrade vs unclassi | fied Approach | | | | Traditional Antegrade Approach Versus Combined Antegrade and Retrograde Approach in the Percutaneous Treatment of Coronary Chronic Total Occlusions (Hsu et al) (77) | 2009 | Japan | Single center prospective study | 96 - | - | 6 months | | | | | ADR vs non-ADR | Approach | | | | Use of antegrade dissection re-entry in coronary chronic total occlusion percutaneous coronary intervention in a contemporary multicenter registry (Danek et al) (78) | 2015 | USA | Multicenter
prospective study | 1288 - | - | - | ## Supplemental Table S3: ROBINS-1 Risk of bias assessment | Study | Bias Due to
Confounding | Bias in
Selection of
Participants | Bias in
Classification
of
Interventions | Bias Due to
Deviations
from
Intended
Interventions | Bias Due
to
Missing
Data | Bias in
Measurement
of Outcomes | Bias in
Selection
of
Reported
Results | Overall
RoB
Judgment | |--------------------------------|----------------------------|---|--|--|-----------------------------------|---------------------------------------|---|----------------------------| | | | | Antegrade | Approach | | | | | | BogannaShanmugam
et al (24) | Moderate | Moderate | Low | Low | Moderate | Moderate | Low | Moderate | | KS et al (25) | Moderate | Moderate | Low | Low | Low | Low | Low | Low | | Akinseye et al (26) | Moderate | Moderate | Low | Moderate | Low | Low | Moderate | Moderate | | | | | Retrograde | Approach | | | | | | Sheiban et al (27) | Moderate | Moderate | Low | Low | Low | Low | Low | Low | | Sianos et al (28) | Moderate | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | | Suk et al (29) | Moderate | Moderate | Low | Low | Moderate | Low | Low | Moderate | | Rathore et al (30) | Low | Moderate | Moderate | Moderate | Low | Low | Low | Low | | Ge et al (31) | Moderate | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | | Lee et al (32) | Moderate | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | | Karmpaliotis, et al (33) | Low | Moderate | Moderate | Low | Moderate | Low | Low | Moderate | | Stojkovic et al (34) | Low | Moderate | Moderate | Low | Moderate | Low | Low | Moderate | | Muramatsu et al (35) | Moderate | Moderate | Low | Low | Moderate | Low | Low | Moderate | | Ma et al (36) | Moderate | Low | Low | Moderate | Low | Low | Low | Moderate | | Tsuchikane et al (37) | Low | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | | Galassi et al (38) | Low | Moderate | Low | Low | Serious | Low | Low | Moderate | | Azzalini et al (39) | Moderate | Low | Low | Low | Low | Low | Low | Moderate | | | | | Dissection re-er | ntry Approach | | | | | | Colombo et al (40) | Moderate | Moderate | Moderate | Low | Low | Moderate | Low | Moderate | | Xenogiannis et al (41) | Moderate | Moderate | Low | Low | Moderate | Moderate | Low | Moderate | | | | | Asian-Pacifi | c algorithm | | | | | | Chan et al (42) | Moderate | Moderate | Low | Moderate | Low | Low | Moderate | Moderate | | | | | Hybrid | Approach | | | | | |----------------------------|----------|----------|----------------|-----------------|----------|----------|----------|----------| | Menon, et al (43) | Moderate | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | | Christopoulos et al (44) | Moderate | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | | Christopoulos et a (45) | Moderate | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | | Christopoulos et al (46) | Moderate | Moderate | Moderate | Moderate | Moderate | Low | Moderate | Moderate | | Michael, et al (47) | Moderate | Low | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate | | Rinfret, et al (48) | Moderate | Low | Moderate | Moderate | Low | Low | Low | Low | | Christopoulos, et al (49) | Moderate | Moderate | Moderate | Moderate | Low | Low | Moderate | Moderate | | Sapontis, et al (50) | Moderate | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | | Vo, et al (51) | Moderate | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | | Amsavelu, et al (52) | Moderate | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | | Wilson, et al (53) | Low | Moderate | Moderate | Moderate | Low | Low | Low | Low | | Basir et al (54) | Moderate | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | | Benincasa et al (55) | Moderate | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | | Daniels et al (56) | Moderate | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | | Lee et al (57) | Moderate | Moderate | Moderate | Moderate | Low | Low | Low | Moderate | | Sapontis et al (58) | Low | Moderate | Moderate | Moderate | Low | Low | Low | Low | | Sapontis et al (59) | Moderate | Low | Moderate | Moderate | Low | Low | Low | Moderate | | Wilson et al (60) | Low | Low | Moderate | Moderate | Low | Low | Low | Low | | Macremans et al (61) | Low | Low | Moderate | Moderate | Low | Low | Low | Low | | Macremans et al (62) | Moderate | Low | Moderate | Moderate | Low | Low | Low | Moderate | | Tajti, et al (63) | Moderate | Low | Moderate | Moderate | Low | Low | Low | Moderate | | | | | Unclassified H | lybrid Approach | | | | | | Surmely, et al (64) | Moderate | Serious | Serious | Moderate | Moderate | Low | Low | Serious | | Rathore, et al (65) | Low | Moderate | Moderate | Moderate | Low | Low | Low | Low | | Nombela-Franco, et al (66) | Low | Moderate | Low | Low | Low | Low | Low | Low | | Galassi, et al (67) | Low | Low | Moderate | Moderate | Low | Low | Low | Low | |--------------------------|----------|----------|-------------------|-------------------|----------|----------|----------|----------| | Okamura, et al (68) | Moderate | Moderate | Moderate | Low | Low | Low | Low | Moderate | | Chai, et al (69) | Moderate | Low | Christensen, et al (70) | Moderate | Moderate | Moderate | Low | Moderate | Moderate | Moderate | Moderate | | | | | Antegrade vs Re | trograde Approa | ch | | | | | Galassi et al (71) | Low | Michael et al (72) | Moderate | Moderate | Moderate | Low | Low | Low | Low | Moderate | | Bijuklic et al (73) | Moderate | Low | Low | Low | Moderate | Low | Low | Low | | Karmapaliotis et al (74) | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate | | Stetler et al) (75) | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate | | Suzuki et al) (76) | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate | | | | Ant | tegrade vs unclas | sified Hybrid App | oroach | | | | | Hsu et al) (77) | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate | | | | | ADR vs non- | ADR Approach | | | | | | | | | | | | | | | # Supplemental Table S4: Baseline Patient Characteristics and Outcomes for Single Arm Studies | | | | Antegrade A | Approach | |--------------------------------|------------------------------------|-------------------------|---------------------|------------------------| | Study | BogannaSha
nmugam et
al (24) | Ks et al (25) | Akinseye et al (26) | Total | | Patients (n) | 82 | 210 | 18 | 310 | | CTO lesions (n) | 82 | 210 | 18 | 310 | | Characteristics | | | | | | Mean age | 62.6 | 56.5 | 58.1 | 58.2 | | Male, n (%) | 70 (85.4) | 170 (81) | 14 (70) | 254 (82) | | HTN, n (%) | 57 (69.5) | 110 (52.4) | 17 (85) | 184 (59.3) | | Dyslipidemia, n (%) | 55(67.1) | | 16 (80) | 71 (0.7) | | Diabetes, n (%) | 19 (23.2) | 71 (33.8) | 9 (45) | 99 (32) | | Smoking, n (%) | 17 (20.7) | 99 (47.1) | 15 (75) | 131 (42) | | Previous MI, n (%) | 9 (11) | - | 5 (25) | 14 (0.1) | | Previous PCI, n (%) | 18 (22) | - | - | 18 (22) | | Previous CABG, n (%) | 5 (6.1) | - | - | 5 (6.1) | | CKD, n (%) | - | - | 0 (0) | 0 (0) | | Procedural characterist | tics | | | | | Number of stents (n) | 1.6 | - | 1.8 | 1.7 | | J-CTO score | - | - | 1.74 | 1.74 | | Procedural duration | 88.1 | - | - | 88.1 | | (min) | | | | | | Outcomes | 11 (70) | 110 (50.1) | 15 (05) | 004 (65) | | Procedural success rate, n (%) | 41 (50) | 143 (68.1) | 17 (85) | 201 (65) | | Technical success rate, n (%) | - | - | 18 (90) | 18
(90) | | Complications | | | | | | Cardiac mortality, n | - | - | 0 (0) in hospital | 0 (0) in hospital | | (%) | | | o (o) in nospitai | | | All-cause mortality, | 1 (1.2) in | 0 (0) in | 0 (0) in hospital | 1 (0.3) in | | n (%) | hospital | hospital | | hospital | | | | 2 (1.2) long | | 2 (1.2) long | | | | term | | term | | MACE, n (%) | - 0 (0.0): | - | 0 (0) in hospital | 0 (0) in hospital | | MI, n (%) | 8 (9.8) in | 10 (4.8) in | 0 (0) in hospital | 18 (5.8) in | | C41 (0/) | hospital | hospital
0 (0) in- | 0 (0) :- 1:4-1 | hospital | | Stroke, n (%) | 1 (1.2) in
hospital | hospital | 0 (0) in hospital | 1 (0.3) in
hospital | | | поѕрнаі | 2 (1.2) long | | 2 (1.2) long | | | | term | | term | | Emergent CABG, n | 4 (4.9) in | 0 (0) in | 0 (0) in hospital | 4 (4.9) in | | (%) | hospital | hospital | 5 (0) m nospitui | hospital | | TVR, n (%) | - | - | 0 (0) in hospital | 0 (0) in hospital | | TLR, n (%) | - | - | - | - | | Stent thrombosis, n | 0 (0) in | - | - | 0 (0) in hospital | | (%) | hospital | | | | | Coronary dissection, | - | - | 2 (10) in | 2 (10) in | | n (%) | | | hospital | hospital | | Coronary | 6 (7.3) in | 17 (8) in | 1 (5) in hospital | 24 (7.7) in | | perforation, n (%) | hospital | hospital | 0.001.5 | hospital | | Tamponade, n (%) | 1 (1.2) in
hospital | 2 (0.95) in
hospital | 0 (0) in hospital | 3 (1) in hospital | | Contrast | 4 (4.9) in | - | - | 4 (0.04) in | | nephropathy, n (%) | hospital | | | hospital | | Bleeding, n (%) | 0 (0) in | 0 (0) in | - | 0 (0) in hospital | | | hospital | hospital | | • | | Vascular access, n | 5 (6.1) in | 16 (0.95) in | = | 21 (7.1) in | | | | |--------------------------------|---------------------------------|-------------------------|-------------------------|------------------------|------------------------|------------------------|-------------------------| | (%) | hospital | hospital | | hospital | | | | | | | | Retrograde | Approach | | | | | Study | Sheiban et al | Sianos et al (28) | Suk et al (29) | Rathore et al (30) | Ge et al (31) | Lee et al (32) | Karmpaliotis et al (33) | | Patients (n) | 18 | 175 | 28 | 157 | 42 | 22 | 462 | | CTO lesions (n) | 18 | 175 | 28 | 157 | 42 | 22 | 462 | | Characteristics | | | | | | | | | Mean age | 60 | 61.4 | 63.4 | 64.9 | 62.8 | 56 | 65 | | Male, n (%) | 15 (83) | 154 (88) | 20 (71) | 134 (85.4) | 41 (98) | 17 (77) | 389 (84) | | HTN, n (%) | 12 (66) | 121 (69.1) | 16 (57.1) | 105 (66.9) | 29 (69) | 15 (68) | 425 (92) | | Dyslipidemia, n (%) | - | 143 (81.7) | 6 (21.4) | 64 (40.8) | 9 (21) | 10 (45) | 451 (97.6) | | Diabetes, n (%) | 5 (28) | 52 (29.7) | 9 (32.1) | 58 (36.9) | 14 (33) | 7 (32) | 208 (45) | | Smoking, n (%) | - | 72 (41.1) | 6 (21.4) | 52 (33.1) | 21 (50) | 12 (55) | - | | Previous MI, n (%) | 13 (72) | 68 (38.9) | 6 (21.4) | 147 (93.6) | 23 (55) | - | 220 (47.7) | | Previous PCI, n (%) | - | 43 (24.6) | 11 (39.2) | 59 (37.6) | - | _ | 208 (45) | | Previous CABG, n | 3 (17) | 19 (10.9) | 0 | 28 (17.8) | 2 (4.8) | 0 (0) | 231 (50) | | (%) | 3 (17) | 15 (10.5) | O . | 20 (17.0) | 2 (4.0) | 0 (0) | 231 (30) | | CKD, n (%) | - | - | - | - | - | - | - | | Procedural characterist | tics | | | | | | | | Number of stents (n) | - | 2.6 | - | - | - | - | - | | J-CTO score | - | - | - | _ | - | _ | - | | Procedural duration | - | - | | - | - | - | 150 | | (min) | | | | | | | | | Outcomes | | | - | | | | | | Procedural success | 12 (67) | 146 (83.4) | 20 (64.5) | 133 (85) | 37 (88.1) | 21 (88) | 367 (79.4) | | rate, n (%) | ` / | ` ' | ` ' | ` / | , , | , , | , , | | Technical success | - | - | - | _ | - | _ | 376 (81.4) | | rate, n (%) | | | | | | | ` ' | | Complications | | | | | | | | | Cardiac mortality, n | - | - | - | - | - | | - | | (%) | | | | | | | | | All-cause mortality, n (%) | - | 0 (0) in
hospital | 1 (3.57) in
hospital | 0 (0) in hospital | 0 (0) in hospital | 0 (0) in hospital | 1 (0.2) in
hospital | | MACE, n (%) | 1 (5.5) in | - | - | 7 (4.5) in | 3 (7.1) in | 0 (0) in hospital | - | | | hospital
5 (28) long
term | | | hospital | hospital | 2 (18) long term | | | MI, n (%) | 1 (5.5) in | 7 (4) in | 1 (3.6) in | 6 (3.8) in | 3 (7.1) in | 1 (4.5) long | 2 (0.4) in | | 1,11,11 (70) | hospital | hospital | hospital | hospital | hospital | term | hospital | | Stroke, n (%) | - | 1 (0.6) in
hospital | - | - | - | 0 (0) in hospital | 1 (0.2) in
hospital | | Emergent CABG, n | - | 0 (0) in
hospital | 0 (0) in hospital | 1 (0.6) in
hospital | 0 (0) in hospital | 0 (0) in hospital | 3 (0.6) in
hospital | | TVR, n (%) | 4 (22) long | - | 0 (0) in hospital | - | 0 (0) in hospital | 1 (4.5) long | - | | , / | term | | ,F | | , | term | | | TLR, n (%) | - | - | - | - | - | - | - | | Stent thrombosis, n | - | - | - | - | 0 (0) in hospital | 1 (4.5) in
hospital | - | | Coronary dissection, | - | 2 (1.1) in | 3 (10.7) in | 15 (9.6) in | 1 (2.4) in | 3 (13.6) in | 2 (0.4) in | | n (%) | | hospital | hospital | hospital | hospital | hospital | hospital | | Coronary | 1 (5.5) in | 12 (6.9) in | - | 6 (3.8) in | 1 (2.4) in | 5 (22.7) in | 6 (1.3) in | | perforation, n (%) | hospital | hospital | | hospital | hospital | hospital | hospital | | Tamponade, n (%) | - | 0 (0) in
hospital | 0 (0) in hospital | 1 (0.6) in
hospital | 1 (2.4) in
hospital | 1 (4.5) in
hospital | 4 (0.87) in hospital | | Contrast
nephropathy, n (%) | - | - | - | - | - | - | - | | Bleeding, n (%) | - | - | - | - | - | - | - | | Vascular access, n | - | - | - | - | - | - | - | | (%) | | | | . , | | | | | | | | Retrograde App | roach (cont'd) | | | | | Study | Stojkovic et
al (34) | Muramatsu
et al (35) | Ma et al (36) | Tsuchikane et al (37) | Galassi et al
(38) | Azzalini et al (39) | Total | | | u1 (0 1) | () | | | | | | | Patients (n) | 40 | 281 | 84
84 | 801 | 1395
1395 | 126 | 3631 | | Characteristics | | | | | | | | |-------------------------------|-------------|-------------|-------------------------|---------------|-------------------|-------------------|------------------| | Mean age | 55.4 | - | 59.6 | 65.8 | 62 | 65.7 | 63.7 | | Male, n (%) | 34 (85) | - | 77 (91.7) | 704 (87.9) | 1235 (88.5) | 113 (90) | 2933 (87.5) | | HTN, n (%) | 30 (75) | - | 41 (48.8) | 581 (72.5) | 1078 (77.3) | 105 (84) | 2558 (76.4) | | Dyslipidemia, n (%) | 25 (62.5) | - | 16 (19) | 541 (67.5) | 1101 (78.9) | 101 (81) | 2467 (74) | | Diabetes, n (%) | 8 (20) | - | 23 (27.4) | 350 (43.7) | 405 (29) | 46 (37) | 1185 (35.5) | | Smoking, n (%) | 30 (75) | - | 48 (57.1) | 343 (42.8) | 808 (57.9) | 64 (51) | 1456 (51) | | Previous MI, n (%) | 21 (52.5) | - | 36 (42.9) | 413 (51.6) | 607 (43.5) | 61 (48) | 1615 (56) | | Previous PCI, n (%) | - | - | - | 236 (29.5) | 780 (55.9) | 85 (67) | 1422 (45) | | Previous CABG, n | 3 (7.5) | - | - | 123 (15.4) | 246 (17.6) | 26 (21) | 681 (21) | | (%) | | | | | | | | | CKD, n (%) | - | - | - | - | - | - | - | | Procedural characterist | | | | | | | 2.7.2 | | Number of stents (n) | 2.9 | - | - | - | - | - | 2.75 | | J-CTO score | - | 100.7 | - | - 105.1 | 3 | 2.36 | 2.95 | | Procedural duration | - | 189.7 | - | 195.1 | 156.3 | 158 | 168.6 | | (min) | | | | | | | | | Outcomes Dragodyral gyacoss | 25 (97 5) | 224 (70.7) | 67 (70.9) | 570 (71.2) | 1060 (75.2) | 102 (92) | 2705 (77) | | Procedural success | 35 (87.5) | 224 (79.7) | 67 (79.8) | 570 (71.2) | 1060 (75.3) | 103 (82) | 2795 (77) | | rate, n (%) Technical success | | | | 563 (70.3) | 1191 (71.2) | 110 (87) | 2240 (80.5) | | rate (%) | - | - | - | 303 (70.3) | 1171 (/1.4) | 110 (07) | 4440 (00.3) | | Complications | | | | | | | | | Cardiac mortality, n | - | _ | | 2 (0.2) in | _ | _ | 2 (0.2) in | | (%) | - | - | = | hospital | - | - | hospital | | All-cause mortality, | 0 (0) in- | | 0 (0) in hospital | 2 (0.2) in | 2 (0.1) in | 1 (0.8) in | 7 (0.3) in | | n (%) | hospital | | o (o) in nospital | hospital | hospital | hospital | hospital | | (/ 0) | 2 (5) long | | | поэрни | поэртші | поэриш | 2 (5) long term | | | term | | | | | | - (c) long term | | MACE, n (%) | 2 (5) in- | _ | 21 (25) in | 13 (1.6) in | _ | _ | 47 (4) in | | Milel, II (70) | hospital | | hospital | hospital | | | hospital | | | 4 (11) long | | позриш | повртия | | | 11 (14) long | | | term | | | | | | term | | | term | | | | | | term | | MI, n (%) | 2 (5) in | _ | 21 (25) in | 4 (0.5) in | 7 (0.4) in | 9 (7.1) in | 63 (2) in | | 1711, 11 (70) | hospital | | hospital | hospital | hospital | hospital | hospital | | | повртии | | поврни | повртии | повртия | поортии | 1 (4.5) long | | | | | | | | | term | | Stroke, n (%) | _ | _ | _ | 2 (0.2) in | 0 (0) in hospital | 0 (0) in hospital | 4 (0.1) in | | 5110110,11 (70) | | | | hospital | o (o) in nospital | o (o) in noopiuu | hospital | | Emergent CABG, n | 1 (2.5) in | - | _ | 2 (0.2) in | 2 (0.1) in | 0 (0) in hospital | 8 (0.2) in | | (%) | hospital | | | hospital | hospital | o (o) in noopiuu | hospital | | TVR, n (%) | 0 (0) in | - | 0 (0) in hospital | - | - | _ | 4 (2) in hospita | | , (, -, | hospital | | · (•) | | | | 1 (4.5) long | | | | | | | | | term l | | TLR, n (%) | - | - | - | 1 (0.1) in | - | - | 1 (0.1) in | | , (, -) | | | | hospital | | | hospital | | Stent thrombosis, n | - | - | - | - | - | 0 (0) in hospital | 1 (0.5) in | | (%) | | | | | | () I I | hospital | | Coronary dissection, | 1 (2.5) in | 6 (2.1) in | 1 (1.2) in | - | 30 (1.9) in | - | 64 (2.4) in | | n (%) | hospital | hospital | hospital | | hospital | | hospital | | Coronary | 2 (5) in | 5 (1.7) in | 3 (3.5) in | - | 31 (2) in | 10 (7.9) in | 82 (2.9) in | | perforation, n (%) | hospital | hospital | hospital | | hospital | hospital | hospital | | Tamponade, n (%) | 1 (2.5) in | - | 1 (1.2) in | 3 (0.4) | 15 (1.0) in | 5 (3.9) in | 32 (1) in | | <u>.</u> (/ - /) | hospital | | hospital | X / | hospital | hospital | hospital | | Contrast | - | - | - | - | - | 2 (1.6) in | 2 (1.6) in | | nephropathy, n (%) | | | | | | hospital | hospital | | Bleeding, n (%) | - | - |
- | - | - | 3 (2.4) in | 3 (2.4) in | | <i>5,</i> (· <i>,</i> | | | | | | hospital | hospital | | Vascular access, n | - | - | - | - | 16 (1.0) in | 3 (2.4) in | 19 (1.2) in | | (%) | | | | | hospital | hospital | hospital | | | | | Dissection Re-er | ntry Approach | | | | | | | | | . 11 | | | | | Study | Colombo et | Xenogiannis | Total | | | | | | | al (40) | et al (41) | | | | | | | Patients (n) | 31 | 467 | 498 | | | | | | CTO lesions (n) | 31 | 467 | 498 | | | | | | | J.1 | 107 | 170 | | | | | | Characteristics | | | | | | | | Characteristics | Mean age | 59.9 | 64.9 | 64.5 | |-------------------------|----------------|-------------|-------------------------| | Male, n (%) | 26 (83.9) | 409 (87.6) | 435 (87.3) | | HTN, n (%) | 16 (51.6) | 420 (90) | 436 (87.5) | | Dyslipidemia, n (%) | 22 (71) | 448 (95.9) | 470 (94.3) | | | | | | | Diabetes, n (%) | 7 (22.5) | 198 (42.4) | 205 (41.1) | | Smoking, n (%) | 17 (54.8) | 124 (26.6) | 141 (28.3) | | Previous MI, n (%) | 15 (48.4) | 225 (48.1) | 240 (48.2) | | Previous PCI, n (%) | - | 326 (69.8) | 326 (69.8) | | Previous CABG, n | 11 (35.5) | | 11 (35.5) | | (%) | () | | | | CKD, n (%) | | _ | | | | <u>-</u> | - | | | Procedural characterist | | | | | Number of stents (n) | 2.3 | 3.2 | 2.75 | | J-CTO score | - | 3.3 | 3.3 | | Procedural duration | - | 201 | 201 | | (min) | | | | | Outcomes | | | | | Procedural success | 21 (67.7) | 436 (93.4) | 457 (91.7) | | rate, n (%) | 21 (07.7) | 430 (73.4) | 457 (21.7) | | | 20 (0 (0) | 162 (00.0) | 402 (00.0) | | Technical success | 30 (96.8) | 462 (98.9) | 492 (98.8) | | rate, n (%) | | | | | Complications | | | | | Cardiac mortality, n | - | - | - | | (%) | | | | | All-cause mortality, | 0 (0) in- | 8 (1.7) in | 8 (1.6) in | | n (%) | hospital | hospital | hospital | | 11 (70) | 1 (3.2) long | nospitai | 1 (3.2) long | | | | | | | | term | | term | | MACE, n (%) | | 30 (6.4) in | 30 (6.4) in | | | 0 (0) long | hospital | hospital | | | term | | 0 (0) long term | | MI, n (%) | 5 (16.1) in | 14 (3) in | 19 (3.8) in | | | hospital | hospital | hospital | | Stroke, n (%) | - | 2 (0.4) in | 2 (0.4) in | | Stroke, ii (70) | | hospital | hospital | | E 4 CARC | 0 (0) : | | | | Emergent CABG, n | 0 (0) in | 2 (0.4) in | 2 (0.4) in | | (%) | hospital | hospital | hospital | | TVR, n (%) | 11 (52.4) long | - | 11 (52.4) in | | | term | | hospital | | TLR, n (%) | - | - | - | | Stent thrombosis, n | 1 (3.2) in | - | 1 (3.2) in | | (%) | hospital | | hospital | | Coronary dissection, | | 0 (1 0) : | | | | 2 (6.5) in | 9 (1.9) in | 11 (2.2) in | | <u>n (%)</u> | hospital | hospital | hospital | | Coronary | 3 (9.7) in | - | 3 (9.7) in | | perforation, n (%) | hospital | | hospital | | Tamponade, n (%) | 0 (0) in | 6 (1.3) in | 6 (1.2) in | | | hospital | hospital | hospital | | | 1 (3.2) long | • | $1(3.2) \log$ | | | term | | term | | Contrast | - | 1 (0.2) in | 1 (0.2) in | | nephropathy, n (%) | | hospital | hospital | | | | * | ινοριαι | | Bleeding, n (%) | - | - | 10 (0.0) | | Vascular access, n | - | 12 (2.6) in | 12 (2.6) in | | (%) | | hospital | hospital | | | | | Asian-Pacific Algorithm | | | | | | | Study | Chan et al | | | | Study | (42) | | | | Detients (n) | | | | | Patients (n) | 485 | | | | CTO lesions (n) | 497 | | | | Characteristics | | | | | Mean age | 61.4 | | | | Male, n (%) | 427 (88.4) | | | | HTN, n (%) | 353 (72.8) | | | | | | | | | Dyslipidemia, n (%) | 283 (58.4) | | | | Diabetes, n (%) | 166 (34.2) | | | | | | | | | G 1: (0/) | 0.45 (50.0) | |-------------------------|---------------| | Smoking, n (%) | 247 (50.9) | | Previous MI, n (%) | 162 (33.4) | | Previous PCI, n (%) | 308 (63.5) | | Previous CABG, n | 29 (6) | | (%) | | | CKD, n (%) | <u>-</u> | | Procedural characterist | tics | | Number of stents (n) | | | J-CTO score | 2.9 | | Procedural duration | 100 | | (min) | | | Outcomes | | | Procedural success | 447 (89.9) | | rate, n (%) | | | Technical success | 455 (93.8) | | rate, n (%) | | | Complications | | | Cardiac mortality, n | | | (%) | | | All-cause mortality, | 1 (0.2) in | | n (%) | hospital | | MACE, n (%) | 19 (3.8) in | | | hospital | | MI (%) | 17 (3.4) in | | | hospital | | Stroke, n (%) | 1 (0.2) in | | | hospital | | Emergent CABG, n | 0 in hospital | | (%) | | | TVR, n (%) | | | TLR, n (%) | <u>-</u> | | Stent thrombosis, n | 1 (0.2) in | | (%) | hospital | | Coronary dissection, | | | n (%) | | | Coronary | | | perforation, n (%) | | | Tamponade, n (%) | 1 (0.2) in | | | hospital | | Contrast | | | nephropathy, n (%) | | | Bleeding, n (%) | - | | Vascular access, n | | | (%) | | | | ** 1 11 1 | | (70) | | | Hybrid A | pproach | | | | |------------------------|-------------------|-------------------------------|---------------------------|---------------------------|---------------------|---------------------|---------------------------| | Study | Menon, et al (43) | Christopoulo
s, et al (44) | Christopoulos, et al (45) | Christopoulos, et al (46) | Micheal, et al (47) | Rinfret, et al (48) | Christopoulos, et al (49) | | Patients (n) | 287 | 496 | 497 | 521 | 73 | 187 | 1019 | | CTO lesions (n) | 287 | 496 | 497 | 521 | 73 | 187 | 1036 | | Characteristics | | | | | | | | | Mean age | 64.4 | 65.00 | 64.70 | 64.70 | 65.10 | 65.00 | 65.00 | | Male, n (%) | 255 (89.00) | 432 (87.00) | 432 (87.00) | 451 (86.56) | 73 (100.00) | 151 (80.75) | 891 (86.00) | | HTN, n (%) | - | 422 (90.00) | 452 (91.00) | 472 (90.60) | 66 (90.40) | 125 (66.84) | 932 (90.00) | | Dyslipidemia, n (%) | - | 471 (95.00) | - | 495 (95.00) | 65 (89.00) | - | 995 (96.00) | | Diabetes, n (%) | 129 (45.00) | 208 (48.00) | 209 (42.00) | 216 (41.46) | 39 (52.80) | 64 (34.22) | 445 (43.00) | | Smoking, n (%) | - | 198 (40.00) | 199 (40.00) | 203 (38.96) | - | - | - | | Previous MI, n (%) | - | 179 (36.00) | 184 (37.00) | 200 (38.39) | 36 (49.30) | 95 (50.80) | 435 (42.00) | | Previous PCI, n (%) | 172 (60.00) | 298 (60.00) | 303 (61.00) | 326 (62.57) | 23 (31.50) | 121 (64.71) | 694 (67.00) | | Previous CABG, n | 103 (36.00) | 176 (35.48) | 179 (36.00) | 189 (36.28) | 22 (30.00) | 54 (28.88) | 352 (34.00) | | (%) | | | | | | | | | CKD, n (%) | - | - | - | - | - | - | - | | Procedural characteris | tics | | | | | | | | Number of stents (n) | - | - | 2.60 | 2.60 | - | - | 2.50 | | J-CTO score | - | 2.67 | 2.70 | 2.70 | - | 2.07 | 2.50 | | Procedural duration | - | - | 108.00 | - | 159.00 | - | 119.00 | | (min) | | | | | | | | | Outcomes | | | | | | | | |---|--|---|---|---|---|---|------------------------------------| | Procedural success | | 450 (90.70) | 451 (90.70) | 468 (89.80) | 63 (86.30) | - | 932 (90.00) | | rate, n (%) | | | | | | | | | Technical success | 267 (93.00) | 454 (91.50) | 455 (91.50) | 480 (92.10) | 66 (90.40) | 191 (90.09) * | 940 (90.73) | | rate, n (%) | | | | | | | | | Complications | | | | | | | | | Cardiac Mortality, n | - | - | - | - | - | 0 (0.00) long | - | | (%) | | | | | | term | | | All-cause mortality, | 2 (0.70) in | 2 (0.40) in | 2 (0.40) in | 2 (0.38) in | - | 3 (1.60) long | 3 (0.29) in | | n (%) | hospital | hospital | hospital | hospital | | term | hospital | | MACE, n (%) | - | 9 (1.80) in | 9 (1.80) in | 12 (2.30) in | - | - | - | | | | hospital | hospital | hospital | | | | | MI, n (%) | 3 (1.05) in | 5 (1.01) in | 5 (1.00) in | 5 (0.96) in | - | 4 (2.00) long | 8 (0.77) in | | G: 1 (0/) | hospital | hospital | hospital | hospital | | term | hospital | | Stroke, n (%) | - | - | 0 (0.00) in | - | - | - | 1 (0.10) in | | E (CARC | | | hospital | | | | hospital | | Emergent CABG, n | - | - | 0 (0.00) in | - | - | - | - | | (%) | | 1 (0.20) : | hospital | | | | 2 (0.10) : | | TVR, n (%) | - | 1 (0.20) in | 1 (0.2) in | - | - | - | 2 (0.19) in | | TI D n (0/) | | hospital | hospital | | | | hospital | | TLR, n (%) Stent thrombosis, n | - | - | - | | 1 (1.37) in | - | - | | Stent thrombosis, n (%) | - | - | - | - | ` / | - | - | | Coronary dissection, | | | 12 (2 40) : | | hospital | | | | n (%) | - | - | 12 (2.40) in
hospital | - | - | - | - | | Coronary | | _ | 16 (3.20) in | _ | | | _ | | perforation, n (%) | - | - | 16 (3.20) in
hospital | - | - | - | - | | Tamponade, n (%) | 1 (0.35) in | 2 (0.40) in | 2 (0.40) in | 1 (0.19) in | | _ | 5 (0.48) in | | ramponade, n (%) | hospital | hospital | hospital | hospital | - | - | hospital | | Contrast | - | поѕрнаі | поѕрнаг | поѕрна | | | поѕрнат | | nephropathy, n (%) | - | - | - | - | - | - | - | | Bleeding, n (%) | | | 3 (0.60) in | 2 (0.38) in | | | 6 (0.58) in | | Diccumg, ii (70) | - | - | hospital | hospital | - | - | hospital | | Vascular access, n | 1 (0.35) in | 1 (0.20) in | 8 (1.60) in | 1 (0.19) in | | | 15 (1.45) in | | (%) | hospital | hospital | hospital | hospital | | |
hospital | | (,0) | | | 110000111111 | oop | | | | | | | • | Hybrid Annro | ach (cont'd) | | | | | | | | Hybrid Appro | ach (cont'd) | | | | | Study | Sapontis, et | Vo. et al (51) | | | Basir, et al (54) | Benincasa, et | Daniels, et al | | Study | Sapontis, et al (50) | Vo, et al (51) | Amsavelu, et al | Wilson, et al | Basir, et al (54) | Benincasa, et al (55) | Daniels, et al | | | al (50) | | Amsavelu, et al (52) | Wilson, et al (53) | | al (55) | (56) | | Patients (n) | al (50) | 48 | Amsavelu, et al (52) | Wilson, et al (53) | 270 | al (55) | (56)
194 | | Patients (n) CTO lesions (n) | al (50) | | Amsavelu, et al (52) | Wilson, et al (53) | | al (55) | (56) | | Patients (n) CTO lesions (n) Characteristics | al (50) 380 380 | 48 50 | Amsavelu, et al (52) 173 173 | Wilson, et al
(53)
1156
1156 | 270
279 | al (55) 75 75 | (56)
194
194 | | Patients (n) CTO lesions (n) Characteristics Mean age | al (50)
380
380
66.00 | 48
50
63.40 | Amsavelu, et al (52) 173 173 64.90 | Wilson, et al
(53)
1156
1156 | 270
279
65.70 | al (55) 75 75 61.90 | (56)
194 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) | al (50)
380
380
66.00
334 (88.00) | 48
50
63.40
40 (83.33) | Amsavelu, et al (52) 173 173 64.90 170 (98.30) | Wilson, et al
(53)
1156
1156 | 270
279
65.70
215 (79.80) | al (55) 75 75 61.90 71 (94.67) | (56)
194
194 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) | al (50)
380
380
66.00
334 (88.00)
342 (90.00) | 48
50
63.40 | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) | Wilson, et al
(53)
1156
1156
65.20
914 (79.10) | 270
279
65.70
215 (79.80)
236 (87.30) | al (55) 75 75 61.90 71 (94.67) 58 (77.33) | (56)
194
194 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) | al (50)
380
380
66.00
334 (88.00)
342 (90.00)
361 (95.00) | 48
50
63.40
40 (83.33)
17 (35.42) | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) | Wilson, et al
(53)
1156
1156
65.20
914 (79.10) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30) | al (55) 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) | (56)
194
194 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) | al (50)
380
380
66.00
334 (88.00)
342 (90.00) | 48
50
63.40
40 (83.33)
17 (35.42)
7 (14.58) | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) | Wilson, et al
(53)
1156
1156
65.20
914 (79.10) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00) | al (55) 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) | (56)
194
194
-
-
- | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) | al (50)
380
380
66.00
334 (88.00)
342 (90.00)
361 (95.00)
163 (43.00) | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58) | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) | Wilson, et al (53) 1156 1156 65.20 914 (79.10) 287 (24.80) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10) | al (55) 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) | (56)
194
194
 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) | al (50)
380
380
66.00
334 (88.00)
342 (90.00)
361 (95.00)
163 (43.00)
-
160 (42.00) | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08) | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) | Wilson, et al
(53)
1156
1156
65.20
914 (79.10)
-
-
287 (24.80) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50) | al (55) 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) | (56)
194
194
 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) | al (50)
380
380
66.00
334 (88.00)
342 (90.00)
361 (95.00)
163 (43.00)
-
160 (42.00)
243 (64.00) | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08) | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) | Wilson, et al (53) 1156 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90) | al (55) 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) | (56) 194 194 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n | al (50)
380
380
66.00
334 (88.00)
342 (90.00)
361 (95.00)
163 (43.00)
-
160 (42.00) | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08) | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) | Wilson, et al (53) 1156 1156 65.20 914 (79.10) 287 (24.80) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50) | al (55) 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) | (56)
194
194
 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) | al (50)
380
380
66.00
334 (88.00)
342 (90.00)
361 (95.00)
163 (43.00)
-
160 (42.00)
243 (64.00) | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08) | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) | Wilson, et al (53) 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) - 255 (22.10) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90) | al (55) 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) | (56) 194 194 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) | al (50)
380
380
380
66.00
334 (88.00)
342 (90.00)
361 (95.00)
163 (43.00)
-
160 (42.00)
243 (64.00)
141 (37.00) | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08)
8 (16.67) | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) 52 (30.60) | Wilson, et al (53) 1156 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90)
112 (41.50) | al (55) 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) 21 (28.00) | | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) | al (50)
380
380
380
66.00
334 (88.00)
342 (90.00)
361 (95.00)
163 (43.00)
-
160 (42.00)
243 (64.00)
141 (37.00) | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08)
8 (16.67) | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) 52 (30.60) | Wilson, et al (53) 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) - 255 (22.10) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90)
112 (41.50) | al (55) 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) 21 (28.00) 8 (10.67) | | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characteris Number of stents (n) | al (50)
380
380
380
66.00
334 (88.00)
342 (90.00)
361 (95.00)
163 (43.00)
-
160 (42.00)
243 (64.00)
141 (37.00)
-
tics | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08)
8 (16.67) | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) 52 (30.60) | Wilson, et al (53) 1156 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) - 255 (22.10) 148 (12.80) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90)
112 (41.50) | al (55) 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) 21 (28.00) 8 (10.67) | (56) 194 194 58 (30.00) | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%)
Smoking, n (%) Previous MI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characteris Number of stents (n) J-CTO score | al (50) 380 380 380 66.00 334 (88.00) 342 (90.00) 361 (95.00) 163 (43.00) - 160 (42.00) 243 (64.00) 141 (37.00) - tics - 2.90 | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08)
8 (16.67)
-
3.00 | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) 52 (30.60) | Wilson, et al (53) 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) - 255 (22.10) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90)
112 (41.50) | al (55) 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) 21 (28.00) 8 (10.67) | (56) 194 194 58 (30.00) | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characteris Number of stents (n) | al (50)
380
380
380
66.00
334 (88.00)
342 (90.00)
361 (95.00)
163 (43.00)
-
160 (42.00)
243 (64.00)
141 (37.00)
-
tics | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08)
8 (16.67) | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) 52 (30.60) | Wilson, et al (53) 1156 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) - 255 (22.10) 148 (12.80) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90)
112 (41.50) | al (55) 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) 21 (28.00) 8 (10.67) | (56) 194 194 58 (30.00) | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characteris Number of stents (n) J-CTO score Procedural duration (min) | al (50) 380 380 380 66.00 334 (88.00) 342 (90.00) 361 (95.00) 163 (43.00) - 160 (42.00) 243 (64.00) 141 (37.00) - tics - 2.90 | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08)
8 (16.67)
-
3.00 | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) 52 (30.60) | Wilson, et al (53) 1156 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) - 255 (22.10) 148 (12.80) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90)
112 (41.50) | al (55) 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) 21 (28.00) 8 (10.67) | (56) 194 194 58 (30.00) | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characteris Number of stents (n) J-CTO score Procedural duration (min) Outcomes | al (50) 380 380 380 66.00 334 (88.00) 342 (90.00) 361 (95.00) 163 (43.00) - 160 (42.00) 243 (64.00) 141 (37.00) - tics - 2.90 109.00 | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08)
8 (16.67)
-
3.00
-
146.10 | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) 52 (30.60) | Wilson, et al (53) 1156 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) - 255 (22.10) 148 (12.80) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90)
112 (41.50)
-
3.20
152.00 | al (55) 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) 21 (28.00) 8 (10.67) 2.20 2.10 142.00 | (56) 194 194 58 (30.00) 2.33 82.00 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characteris Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success | al (50) 380 380 380 66.00 334 (88.00) 342 (90.00) 361 (95.00) 163 (43.00) - 160 (42.00) 243 (64.00) 141 (37.00) - tics - 2.90 | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08)
8 (16.67)
-
3.00 | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) 52 (30.60) | Wilson, et al (53) 1156 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) - 255 (22.10) 148 (12.80) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90)
112 (41.50) | al (55) 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) 21 (28.00) 8 (10.67) | (56) 194 194 58 (30.00) | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characteris Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) | al (50) 380 380 380 66.00 334 (88.00) 342 (90.00) 361 (95.00) 163 (43.00) - 160 (42.00) 243 (64.00) 141 (37.00) - tics - 2.90 109.00 | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08)
8 (16.67)
-
146.10 | Amsavelu, et al (52) 173 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) 52 (30.60) 2.34 | Wilson, et al (53) 1156 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) - 255 (22.10) 148 (12.80) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90)
112 (41.50)
-
3.20
152.00 | al (55) 75 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) 21 (28.00) 8 (10.67) 2.20 2.10 142.00 40 (53.00) | (56) 194 194 58 (30.00) 2.33 82.00 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characteris Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success | al (50) 380 380 380 66.00 334 (88.00) 342 (90.00) 361 (95.00) 163 (43.00) - 160 (42.00) 243 (64.00) 141 (37.00) - tics - 2.90 109.00 | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08)
8 (16.67)
-
3.00
-
146.10 | Amsavelu, et al (52) 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) 52 (30.60) | Wilson, et al (53) 1156 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) - 255 (22.10) 148 (12.80) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90)
112 (41.50)
-
3.20
152.00 | al (55) 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) 21 (28.00) 8 (10.67) 2.20 2.10 142.00 | (56) 194 194 58 (30.00) 2.33 82.00 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characteris Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) | al (50) 380 380 380 66.00 334 (88.00) 342 (90.00) 361 (95.00) 163 (43.00) - 160 (42.00) 243 (64.00) 141 (37.00) - tics - 2.90 109.00 | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08)
8 (16.67)
-
146.10 | Amsavelu, et al (52) 173 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) 52 (30.60) 2.34 | Wilson, et al (53) 1156 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) - 255 (22.10) 148 (12.80) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90)
112 (41.50)
-
3.20
152.00 | al (55) 75 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) 21 (28.00) 8 (10.67) 2.20 2.10 142.00 40 (53.00) | (56) 194 194 58 (30.00) 2.33 82.00 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characteris Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications | al (50) 380 380 380 66.00 334 (88.00) 342 (90.00) 361 (95.00) 163 (43.00) - 160 (42.00) 243 (64.00) 141 (37.00) - tics - 2.90 109.00 | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08)
8 (16.67)
-
146.10 | Amsavelu, et al (52) 173 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) 52 (30.60) 2.34 | Wilson, et al (53) 1156 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) - 255 (22.10) 148 (12.80) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90)
112 (41.50)
-
3.20
152.00 | al (55) 75 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) 21 (28.00) 8 (10.67) 2.20 2.10 142.00 40 (53.00) 42 (56.00) | (56) 194 194 58
(30.00) 2.33 82.00 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characteris Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n | al (50) 380 380 380 66.00 334 (88.00) 342 (90.00) 361 (95.00) 163 (43.00) - 160 (42.00) 243 (64.00) 141 (37.00) - tics - 2.90 109.00 | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08)
8 (16.67)
-
146.10 | Amsavelu, et al (52) 173 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) 52 (30.60) 2.34 | Wilson, et al (53) 1156 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) - 255 (22.10) 148 (12.80) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90)
112 (41.50)
-
3.20
152.00 | al (55) 75 75 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) 21 (28.00) 8 (10.67) 2.20 2.10 142.00 40 (53.00) 42 (56.00) | (56) 194 194 58 (30.00) 2.33 82.00 | | Patients (n) CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) Previous CABG, n (%) CKD, n (%) Procedural characteris Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications | al (50) 380 380 380 66.00 334 (88.00) 342 (90.00) 361 (95.00) 163 (43.00) - 160 (42.00) 243 (64.00) 141 (37.00) - tics - 2.90 109.00 | 48
50
63.40
40 (83.33)
17 (35.42)
-
7 (14.58)
7 (14.58)
13 (27.08)
13 (27.08)
8 (16.67)
-
146.10 | Amsavelu, et al (52) 173 173 173 64.90 170 (98.30) 157 (90.70) 161 (93.10) 104 (60.10) 59 (34.10) 82 (47.10) 94 (54.30) 52 (30.60) 2.34 | Wilson, et al (53) 1156 1156 1156 65.20 914 (79.10) 287 (24.80) - 630 (54.50) - 255 (22.10) 148 (12.80) | 270
279
65.70
215 (79.80)
236 (87.30)
252 (93.30)
140 (52.00)
57 (21.10)
107 (39.50)
221 (81.90)
112 (41.50)
-
3.20
152.00 | al (55) 75 75 75 75 61.90 71 (94.67) 58 (77.33) 65 (86.67) 15 (20.00) 13 (17.33) 40 (53.33) 56 (74.67) 21 (28.00) 8 (10.67) 2.20 2.10 142.00 40 (53.00) 42 (56.00) | (56) 194 194 58 (30.00) 2.33 82.00 | | All-cause mortality, n (%) | 2 (0.53) in
hospital | 0 (0.00) in
hospital | 11 (6.51) long
term | 0 (0.00) in
hospital
3 (0.30) long | 4 (1.50) in
hospital | - | 0 (0.00) in
hospital | |---|---|--------------------------------|--|--|---|--|--| | MACE, n (%) | 10 (2.63) in hospital | - | - | term
18 (1.56) long
term* | 12 (4.40) in
hospital | 2 (3.00) in
hospital
6 (8.80) long | - | | MI, n (%) | 4 (1.05) in | 0 (0.00) in | 18 (10.55) long | 9 (0.80) in | 2 (0.70) in | term* 1 (1.50) long | - | | | hospital | hospital | term | hospital | hospital | term* | | | Stroke, n (%) | 0 (0.00) in
hospital | 0 (0.00) in
hospital | - | 5 (0.40) in
hospital | 3 (1.10) in hospital | - | - | | Emergent CABG, n | 0 (0.00) in
hospital | 0 (0.00) in
hospital | - | 0 (0.00) in
hospital | 2 (0.7) in
hospital | - | - | | TVR, n (%) | - | - | 61 (35.56) *
long term | - | - | 5 (7.40) long
term | - | | TLR, n (%) | - | - | 61 (35.56) *
long term | - | - | - | - | | Stent Thrombosis, n | - | 0 (0.00) in
hospital | - | - | - | - | - | | Coronary dissection, | _ | 1 (2.00) in | _ | _ | | _ | _ | | n (%) | | hospital | | | | | | | Coronary | 13 (3.42) in | 2 (4.00) in | - | 53 (4.60) in | - | 9 (12.00) in | 12 (6.00) in | | perforation, n (%) | hospital
4 (1.05) in | hospital | | hospital | 5 (1 00) : | hospital
1 (1.30) in | hospital | | Tamponade, n (%) | 4 (1.05) in
hospital | 0 (0.00) in
hospital | - | 8 (0.70) in
hospital | 5 (1.90) in
hospital | hospital | - | | Contrast
nephropathy, n (%) | - | 0 (0.00) in
hospital | - | 3 (0.3) in hospital | - | - | - | | Bleeding, n (%) | - | 1 (2.00) in
hospital | - | - | - | - | - | | Vascular access, n | - | 3 (6.00) in | - | 8 (0.70) in
hospital | - | - | - | | (%) | | hospital | Hybrid Appro | <u> </u> | | | | | Study | Lee, et al (57) | Sapontis, et
al (58) | Sapontis, et al (59) | Wilson, et al (60) | Maeremans, et al (61) | Maeremans, et al (62) | Tajti, et al (63) | | Patients (n) | 321 | 1000 | 1000 | 805 | 388 | 1067 | 3055 | | CTO lesions (n) | 321 | 1054 | 1096 | 805 | 411 | 1253 | 3122 | | Characteristics Mean age | 63.60 | 65.40 | 65.30 | 65.30 | 64.00 | 66.00 | 64.80 | | Male, n (%) | 277 (86.30) | 804 (80.40) | 883 (80.57) | 636 (79.00) | 313 (80.67) | 908 (85.10) | 2604 (85.25) | | HTN, n (%) | 273 (85.00) | 852 (85.20) | 975 (88.96) | 564 (70.00) | 284 (73.20) | 639 (59.89) | 2757 (90.26) | | Dyslipidemia, n (%) | 135 (42.10) | - | 1030 (93.98) | 547 (68.00) | 329 (84.79) | 712 (66.73) | 2814 (92.11) | | Diabetes, n (%) | 103 (32.10) | 412 (41.20) | 442 (40.33) | 217 (27.00) | 112 (28.87) | 272 (25.49) | 1314 (43.02) | | Smoking, n (%) | 93 (29.00) | 638 (68.30) | 188 (17.15) | 137 (17.00) | 110 (28.35) | 244 (22.87) | 795 (26.01) | | Previous MI, n (%) | 48 (15.00) | 484 (48.40) | 535 (48.81) | 443 (55.00) | 147 (37.89) | 399 (37.39) | 1405 (46.00) | | Previous PCI, n (%) | - | - | 728 (66.42) | 507 (63.00) | 195 (50.26) | 596 (55.86) | 1995 (65.29) | | Previous CABG, n
(%) | 7 (2.20) | 365 (36.50) | 389 (35.49) | 169 (21.00) | 48 (14.43) | 183 (17.00) | 993 (32.49) | | CKD, n (%) | - | 135 (13.50) | 27 (2.46) | 113 (14.00) | 54 (13.92) | 118 (11.06) | - | | Procedural characterist | | | | | | | | | | tics | | | 2.70 | 2.00 | 2.40 | 2.40 | | Number of stents (n) | - | - 1054 | - | 2.50 | 2.00 | 2.40 | 2.40 | | J-CTO score
Procedural duration | 3.31
104.90 | -
2.30-use 1054
120.70 | - | 2.50
2.40
107.00 | 2.00
2.20
89.00 | 2.40
-
86.00 | 2.40
2.43
123.00 | | J-CTO score Procedural duration (min) | 3.31 | | - | 2.40 | 2.20 | - | 2.43 | | J-CTO score Procedural duration (min) Outcomes Procedural success | 3.31 | | - | 2.40 | 2.20 | - | 2.43 | | J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success | 3.31 | | - | 2.40 | 2.20 | - | 2.43
123.00 | | J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) | 3.31
104.90 | 120.70 | 956 (87.20) | 2.40 | 2.20
89.00 | -
86.00 | 2.43
123.00
2654 (85.00) | | J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n | 3.31
104.90 | 120.70 | 956 (87.20) | 2.40
107.00
-
839 (90.3) * | 2.20
89.00
-
338 (82.24) | -
86.00
-
922 (86.00)
14 (1.31) long | 2.43
123.00
2654 (85.00) | | J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) All-cause mortality, | -
3.31
104.90
-
311 (96.90)
-
2 (0.62) in | - 862 (86.20)
- 9 (0.90) in | 956 (87.20)
981 (89.50)
-
9 (0.82) in | 2.40
107.00
-
839 (90.3) *
8 (0.99) long
term
21 (2.61) long | 2.20
89.00
-
338 (82.24)
1 (0.24) in
hospital
1 (0.24) in | -
86.00
-
922 (86.00)
14 (1.31) long
term
20 (1.87) long | 2.43
123.00
2654 (85.00)
2711 (86.84) | | J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) | -
3.31
104.90
-
311 (96.90) | -
862 (86.20) | 956 (87.20)
981 (89.50) | 2.40
107.00
-
839 (90.3) *
8 (0.99) long
term | 2.20
89.00
-
338 (82.24)
1 (0.24) in
hospital | -
86.00
-
922 (86.00)
14 (1.31) long
term | 2.43
123.00
2654 (85.00)
2711 (86.84) | | MI, n (%) | 0 (0.00) in | 26 (2.60) in | 25 (2.28) in | 25 (3.11) long | 9 (2.19) in | 15 (1.41) long | 34 (1.08) in | |--|--|--------------------------|--------------------------|---------------------|-------------------------|----------------------------|-------------------------| | Stroke, n (%) | hospital
- | hospital
0 (0.00) in | hospital
1 (0.09) in | term
- | hospital
- | term
- | hospital
8 (0.26) in | | | | hospital | hospital | | | | hospital | | Emergent CABG, n | - | 7 (0.70) in | 4 (0.36) in | - | - | 5 (0.47) in | 5 (0.16) in | | %)
TVR, n (%) | | hospital
- | hospital
- | 41 (5.09) long | 1 (0.24) in | hospital
59 (5.53) long | hospital
- | | 1 v K, II (70) | | | | term | hospital | term | | | TLR, n (%) | - | - | - | 37 (4.60) long term | - | - | - | | Stent thrombosis, n | - | - | - | 11 (1.37) long | - | - | - | |
Coronary dissection, n (%) | - | - | - | term
- | 1 (0.24) in
hospital | - | - | | Coronary | - | 48 (4.8) in | 51 (4.65) in | - | 2 (0.49) in | - | - | | perforation, n (%) | | hospital | hospital | | hospital | | | | Tamponade, n (%) | 6 (1.87) in
hospital | - | 18 (1.64) in
hospital | - | 2 (0.49) in
hospital | 3 (0.28) in hospital | 27 (0.85) in hospital | | Contrast | - | 8 (0.8) in | - | - | - | 7 (0.66) long | - | | nephropathy, n (%) | | hospital | | | | term | | | Bleeding, n (%) | 1 (0.31) in | 3 (0.30) in | 95 (8.70) in | - | 2 (0.49) in | 13 (1.22) long | - | | Vascular access, n | hospital
- | hospital
43 (4.30) in | hospital
- | | hospital
- | 6 (0.56) long | | | (%) | | hospital | | | | term | | | | | | Hybrid Appı | roach (cont'd) | | | | | Study | Total | | | | | | | | Patients (n) | 13012 | | | | | | | | CTO lesions (n) | 13466 | | | | | | | | Characteristics | | | | | | | | | Mean age | 65.51 | | | | | | | | Male, n (%) | 10854 (83.94) | | | | | | | | HTN, n (%) Dyslipidemia, n (%) | 9623 (83.77)
8432 (86.43) | | | | | | | | Diabetes, n (%) | 4898 (37.88) | | | | | | | | Smoking, n (%) | 2941(29.97) | | | | | | | | Previous MI, n (%) | 5622 (44.46) | | | | | | | | Previous PCI, n (%) | 6585 (62.99) | | | | | | | | Previous CABG, n | 3876 (29.53) | | | | | | | | CKD, n (%) | (02 (10 70) | | | | | | | | Procedural characterist | DU3 (10 /9) | | | | | | | | r rocedurai characterisi | 603 (10.79)
tics | | | | | | | | | tics | | | | | | | | Number of stents (n) J-CTO score | zics
2.43 | | | | | | | | Number of stents (n) J-CTO score Procedural duration | tics | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) | 2.43
2.51 | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes | 2.43
2.51
113.09 | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success | 2.43
2.51 | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success | 2.43
2.51
113.09 | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) | 2.43
2.51
113.09
6834 (87.50) | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77) | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77) | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77)
1 (0.24) in
hospital | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77)
1 (0.24) in
hospital
22 (1.03) long | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77)
1 (0.24) in
hospital
22 (1.03) long
term | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) All-cause mortality, | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77)
1 (0.24) in
hospital
22 (1.03) long
term
65 (0.60) in | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) All-cause mortality, | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77)
1 (0.24) in
hospital
22 (1.03) long
term | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) All-cause mortality, | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77)
1 (0.24) in
hospital
22 (1.03) long
term
65 (0.60) in
hospital
58 (1.71) long
term | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77)
1 (0.24) in
hospital
22 (1.03) long
term
65 (0.60) in
hospital
58 (1.71) long
term
273 (3.33) in | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) All-cause mortality, n (%) | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77)
1 (0.24) in
hospital
22 (1.03) long
term
65 (0.60) in
hospital
58 (1.71) long
term
273 (3.33) in
hospital | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) All-cause mortality, n (%) | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77)
1 (0.24) in hospital
22 (1.03) long term
65 (0.60) in hospital
58 (1.71) long term
273 (3.33) in hospital
131 (4.22) | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) All-cause mortality, n (%) MACE, n (%) | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77)
1 (0.24) in hospital
22 (1.03) long term
65 (0.60) in hospital
58 (1.71) long term
273 (3.33) in hospital
131 (4.22) long term | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) All-cause mortality, n (%) | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77)
1 (0.24) in hospital
22 (1.03) long term
65 (0.60) in hospital
58 (1.71) long term
273 (3.33) in hospital
131 (4.22) long term
135 (1.27) in | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) All-cause mortality, n (%) MACE, n (%) | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77)
1 (0.24) in hospital
22 (1.03) long term
65 (0.60) in hospital
58 (1.71) long term
273 (3.33) in hospital
131 (4.22) long term
135 (1.27) in hospital | | | | | | | | Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) All-cause mortality, n (%) MACE, n (%) | 2.43
2.51
113.09
6834 (87.50)
10329 (88.77)
1 (0.24) in hospital
22 (1.03) long term
65 (0.60) in hospital
58 (1.71) long term
273 (3.33) in hospital
131 (4.22) long term
135 (1.27) in | | | | | | | | Stroke, n (%) | 18 (0.21) in | |----------------------|----------------| | | hospital | | Emergent CABG, n | 23 (0.27) in | | (%) | hospital | | TVR, n (%) | 5 (0.20) in | | | hospital | | | 166 (7.86) | | | long term | | TLR, n (%) | 98 (10.02) | | | long term | | Stent thrombosis, n | 1 (0.81) in | | (%) | hospital | | | 11 (1.37) long | | | term | | Coronary dissection, | 14 (1.46) in | | n (%) | hospital | | Coronary | 206 (4.24) in | | perforation, n (%) | hospital | | Tamponade, n (%) | 85 (0.79) in | | | hospital | | Contrast | 11 (0.50) in | | nephropathy, n (%) | hospital | | | 7 (0.66) long | | | term | | Bleeding, n (%) | 113 (2.29) in | | | hospital | | | 13 (1.22) long | | | term | | Vascular access, n | 80 (1.59) in | | (%) | hospital | | | 6 (0.56) long | | | term | | | | | Unclassified | l Approach | | | | |--------------------------|---------------------|---------------------|-----------------------------------|------------------------|-------------------------|------------------|-------------------------| | Study | Surmely, et al (64) | Rathore, et al (65) | Nombela-
Franco, et al
(66) | Galassi, et al
(67) | Okamura, et al
(68) | Chai, et al (69) | Christensen, et al (70) | | Patients (n) | 21 | 806 | 209 | 100 | 1166 | 223 | 503 | | CTO lesions (n) | 21 | 904 | 209 | 100 | 1166 | 228 | 594 | | Characteristics | | | | | | | | | Mean age | 65.30 | 65.49 | 67.00 | 61.40 | - | 59.35 | 67.00 | | Male, n (%) | 19 (90.48) | 748 (82.74) | 171 (81.82) | 90 (90.00) | 1039 (89.11) | 211 (94.62) | 401 (79.70) | | HTN, n (%) | - | 562 (62.17) | 146 (69.86) | 80 (80.00) | 852 (73.07) | 140 (61.40) | 382 (76.00) | | Dyslipidemia, n (%) | - | 357 (39.49) | 185 (88.52) | - | 779 (66.81) | - | 385 (76.50) | | Diabetes, n (%) | - | 360 (39.82) | 69 (33.01) | 21 (21.00) | 520 (44.60) | 74 (32.46) | 121 (24.10) | | Smoking, n (%) | - | 252 (27.88) | 55 (26.32) | 52.00 | 497 (42.62) | 84 (36.84) | 162 (32.20) | | Previous MI, n (%) | - | 778 (86.06) | 117 (55.98) | 47 (47.00) | 592 (50.77) | = | 162 (32.20) | | Previous PCI, n (%) | - | 247 (27.32) | 137 (65.55) | 47 (47.00) | - | - | 179 (35.60) | | Previous CABG, n | 4 (19.05) | 114 (12.61) | 59 (28.23) | 13 (13.00) | 181 (15.52) | 9 (3.95) | 76 (15.10) | | (%) | , , | , , | , , | , , | , , | , , | , , | | CKD, n (%) | - | - | - | - | - | - | - | | Procedural characterist | ics | | | | | | | | Number of stents (n) | - | - | - | 3.20 | - | - | - | | J-CTO score | - | -
| 1.99 | - | - | - | 3.00 | | Procedural duration | - | - | - | 132 | 193 | - | - | | (min) | | | | | | | | | Outcomes | | | | | | | | | Procedural success | - | 780 (86.28) | 187 (89.47) | 92 (92.00) | 985 (84.48) | - | 412 (69.38) | | rate, n (%) | | | | | | | | | Technical success | 18 (85.71) | 791 (87.50) | 189 (90.40) | - | - | 197 (86.40) | - | | rate, n (%) | | | | | | | | | Complications | | | | | | | | | Cardiac Mortality, n (%) | - | - | - | 2 (2.10) long
term | 3 (0.26) in
hospital | - | - | | All-cause mortality, | - | 5 (0.55) in | 2 (0.96) in | 2 (2.10) long | 7 (0.60) in | - | 2 (0.34) in | | n (%) | | hospital | hospital | term | hospital | | hospital | | MACE, n (%) | - | 17 (1.88) in | 4 (1.91) in | 10 (10.80) long | 18 (1.54) in | - | - | | | | hospital | hospital | term | hospital | | | | | | • | • | | • | | | | MI, n (%) | 0 (0.00) in
hospital | 27 (2.99) in
hospital | - | 3 (3.00) in
hospital
2 (2.10) long | 6 (0.51) in
hospital | - | 12 (2.02) in
hospital | |--|---|--------------------------|-------------------------|--|--------------------------|-------------------------|--------------------------| | Stroke, n (%) | - | - | 2 (0.96) in
hospital | term
- | 1 (0.09) in
hospital | - | 1 (0.17) in
hospital | | Emergent CABG, n | 0 (0.00) in | 2 (0.22) in | 1 (0.48) | 0 (0.00) in | 2 (0.17) in | - | 1 (0.17) in | | (%) | hospital | hospital | hospital | hospital | hospital | | hospital | | TVR, n (%) | - | - | - | | - | | - | | TLR, n (%) | - | - | - | 6 (6.45) long
term | 1 (0.09) in
hospital | | - | | Stent thrombosis, n
(%) | - | - | - | 18 (19.35) long term | - | 6 (2.63) in hospital | - | | Coronary dissection, n (%) | - | 135 (14.93) in hospital | - | - | 11 (0.94) in
hospital | 19 (8.33) * in hospital | - | | Coronary | - | 103 (11.39) in | 2 (0.96) in | 7 (7.00) in | 26 (2.23) in | 19 (8.33) * in | - | | perforation, n (%) | | hospital | hospital | hospital | hospital | hospital | | | Tamponade, n (%) | - | 6 (0.66) in
hospital | - | 1 (1.00) in
hospital | 6 (0.51) | 4 (1.75) in hospital | 7 (1.18) in
hospital | | Contrast | - | - | 2 (0.96) in | 5 (5.00) in | 6 (0.51) in | - | 4 (0.67) in | | nephropathy, n (%) | | | hospital | hospital | hospital | | hospital | | Bleeding, n (%) | - | - | - | - | 1 (0.1) in
hospital | 1 (0.54) in
hospital | - | | Vascular access, n | - | - | 0 (0.00) in
hospital | - | 8 (0.69) in
hospital | - | - | | | | | Unclassified App | proach (cont'd) | | | | | Study | Total | | | | | | | | | | | | | | | | | | 3028 | | | | | | | | | 3028
3222 | | | | | | | | CTO lesions (n) | | | | | | | | | CTO lesions (n) Characteristics Mean age | 3222
65.11 | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) | 3222
65.11
2679 (85.56) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) | 3222
65.11
2679 (85.56)
2162 (69.52) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) | 3222
65.11
2679 (85.56)
2162 (69.52)
1706 (61.32) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) | 65.11
2679 (85.56)
2162 (69.52)
1706 (61.32)
1165 (37.46) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) | 65.11
2679 (85.56)
2162 (69.52)
1706 (61.32)
1165 (37.46)
1102 (35.43) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) | 65.11
2679 (85.56)
2162 (69.52)
1706 (61.32)
1165 (37.46)
1102 (35.43)
1696 (58.85) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) | 65.11
2679 (85.56)
2162 (69.52)
1706 (61.32)
1165 (37.46)
1102 (35.43)
1696 (58.85)
610 (35.55) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) | 65.11
2679 (85.56)
2162 (69.52)
1706 (61.32)
1165 (37.46)
1102 (35.43)
1696 (58.85) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) | 65.11
2679 (85.56)
2162 (69.52)
1706 (61.32)
1165 (37.46)
1102 (35.43)
1696 (58.85)
610 (35.55)
456 (14.56) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) | 65.11
2679 (85.56)
2162 (69.52)
1706 (61.32)
1165 (37.46)
1102 (35.43)
1696 (58.85)
610 (35.55)
456 (14.56) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characterist Number of stents (n) | 65.11
2679 (85.56)
2162 (69.52)
1706 (61.32)
1165 (37.46)
1102 (35.43)
1696 (58.85)
610 (35.55)
456 (14.56) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) CKD, n (%) Procedural characterist Number of stents (n) J-CTO score | 3222 65.11 2679 (85.56) 2162 (69.52) 1706 (61.32) 1165 (37.46) 1102 (35.43) 1696 (58.85) 610 (35.55) 456 (14.56) - tics 3.20 2.74 | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characterist Number of stents (n) J-CTO score Procedural duration (min) | 65.11
2679 (85.56)
2162 (69.52)
1706 (61.32)
1165 (37.46)
1102 (35.43)
1696 (58.85)
610 (35.55)
456 (14.56) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characterist Number of stents (n) J-CTO score Procedural duration (min) Outcomes | 65.11
2679 (85.56)
2162 (69.52)
1706 (61.32)
1165 (37.46)
1102 (35.43)
1696 (58.85)
610 (35.55)
456 (14.56)
 | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) CKD, n (%) CKD, n (%) Procedural characterist Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) | 65.11
2679 (85.56)
2162 (69.52)
1706 (61.32)
1165 (37.46)
1102 (35.43)
1696 (58.85)
610 (35.55)
456 (14.56)
 | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) CKD, n (%) CKD, n (%) Procedural characterist Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success | 65.11
2679 (85.56)
2162 (69.52)
1706 (61.32)
1165 (37.46)
1102 (35.43)
1696 (58.85)
610 (35.55)
456 (14.56)
 | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) CKD, n (%) CKD, n (%) Procedural characterist Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications | 65.11
2679 (85.56)
2162 (69.52)
1706 (61.32)
1165 (37.46)
1102 (35.43)
1696 (58.85)
610 (35.55)
456 (14.56)
 | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characterist Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n | 65.11 2679 (85.56) 2162 (69.52) 1706 (61.32) 1165 (37.46) 1102 (35.43) 1696 (58.85) 610 (35.55) 456 (14.56) - tics 3.20 2.74 188.18 2456 (82.61) 1195 (87.74) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characterist Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n | 3222 65.11 2679 (85.56) 2162 (69.52) 1706 (61.32) 1165 (37.46) 1102 (35.43) 1696 (58.85) 610 (35.55) 456 (14.56) - tites 3.20 2.74 188.18 2456 (82.61) 1195 (87.74) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characterist Number of
stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) | 3222 65.11 2679 (85.56) 2162 (69.52) 1706 (61.32) 1165 (37.46) 1102 (35.43) 1696 (58.85) 610 (35.55) 456 (14.56) tics 3.20 2.74 188.18 2456 (82.61) 1195 (87.74) 3 (0.26) in hospital 2 (2.10) long term | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characterist Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) All-cause mortality, | 3222 65.11 2679 (85.56) 2162 (69.52) 1706 (61.32) 1165 (37.46) 1102 (35.43) 1696 (58.85) 610 (35.55) 456 (14.56) tics 3.20 2.74 188.18 2456 (82.61) 1195 (87.74) 3 (0.26) in hospital 2 (2.10) long term 16 (0.56) in | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characterist Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) All-cause mortality, | 3222 65.11 2679 (85.56) 2162 (69.52) 1706 (61.32) 1165 (37.46) 1102 (35.43) 1696 (58.85) 610 (35.55) 456 (14.56) tics 3.20 2.74 188.18 2456 (82.61) 1195 (87.74) 3 (0.26) in hospital 2 (2.10) long term | | | | | | | | Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characterist Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Cardiac mortality, n (%) All-cause mortality, n (%) | 3222 65.11 2679 (85.56) 2162 (69.52) 1706 (61.32) 1165 (37.46) 1102 (35.43) 1696 (58.85) 610 (35.55) 456 (14.56) tics 3.20 2.74 188.18 2456 (82.61) 1195 (87.74) 3 (0.26) in hospital 2 (2.10) long term 16 (0.56) in hospital 2 (2.10) long term | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Diabetes, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) Procedural characterist Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Complications Cardiac mortality, n (%) | 3222 65.11 2679 (85.56) 2162 (69.52) 1706 (61.32) 1165 (37.46) 1102 (35.43) 1696 (58.85) 610 (35.55) 456 (14.56) tics 3.20 2.74 188.18 2456 (82.61) 1195 (87.74) 3 (0.26) in hospital 2 (2.10) long term 16 (0.56) in hospital 2 (2.10) long term 39 (1.71) in hospital 10 (10.80) | | | | | | | | CTO lesions (n) Characteristics Mean age Male, n (%) HTN, n (%) Dyslipidemia, n (%) Smoking, n (%) Previous MI, n (%) Previous PCI, n (%) Previous CABG, n (%) CKD, n (%) Procedural characterist Number of stents (n) J-CTO score Procedural duration (min) Outcomes Procedural success rate, n (%) Technical success rate, n (%) Cardiac mortality, n (%) | 3222 65.11 2679 (85.56) 2162 (69.52) 1706 (61.32) 1165 (37.46) 1102 (35.43) 1696 (58.85) 610 (35.55) 456 (14.56) tics 3.20 2.74 188.18 2456 (82.61) 1195 (87.74) 3 (0.26) in hospital 2 (2.10) long term 16 (0.56) in hospital 2 (2.10) long term 39 (1.71) in hospital | | | | | | | | | 2 (2.10) long | |----------------------|---------------| | | term | | Stroke, n (%) | 4 (0.20) in | | | hospital | | Emergent CABG, n | 6 (0.20) in | | (%) | hospital | | TVR, n (%) | | | TLR, n (%) | 1 (0.09) in | | | hospital | | | 6 (6.45) long | | | term | | Stent thrombosis, n | 6 (2.63) in | | (%) | hospital | | | 18 (19.35) | | | long term | | Coronary dissection, | 165 (7.18) in | | n (%) | hospital | | Coronary | 157 (6.02) in | | perforation, n (%) | hospital | | Tamponade, n (%) | 24 (0.80) in | | | hospital | | Contrast | 17 (0.82) in | | nephropathy, n (%) | hospital | | Bleeding, n (%) | 2 (0.14) in | | | hospital | | Vascular access, n | 8 (0.58) in | | (%) | hospital | | | | # Supplemental Table S5: Baseline Patient Characteristics and Outcomes for Double Arm Studies | | | A | ntegrade | vs Retrograde A | pproach | | | | | |-----------------------------------|----------------------|-------------------------|-------------|------------------------|------------------------|-------------|------------------------|--------------------|-------------| | Study | Galassi et al (71) | | | Michael et al (72) | | | Bijuklic et al (73) | | | | Arms | Antegrade | Retrograd
e | P-
value | Antegrade | Retrograde | P-
value | Antegrade | Retrograde | P-
value | | Patients (n) | 1749 | 234 | 741240 | 152 | 41 | 74140 | 325 | 71 | 74240 | | CTO lesions (n) | 1749 | 234 | | 152 | 41 | | 325 | 71 | | | Characteristics | - | - | - | | | | | | | | Mean age | - | - | - | 63.6 | 63.7 | 0.958 | 63.7 | 61.8 | 0.15 | | Male, n (%) | - | - | - | 150 (99) | 39 (95) | 0.087 | 280 (86.2) | 62 (87.3) | 0.79 | | HTN, n (%) | - | - | - | 132 (87) | 36 (88) | 0.966 | 322 (99.1) | 70 (98.6) | 0.71 | | Dyslipidemia, n (%) | = | - | - | 135 (89) | 40 (97) | 0.088 | 283 (87.1) | 68 (95.8) | 0.036 | | Diabetes, n (%) | - | - | - | 64 (42.2) | 17 (42.5) | 0.980 | 87 (26.8) | 13 (18.3) | 0.14 | | Smoking, n (%) | - | - | - | - | - | | - | - | | | Previous MI, n (%) | - | - | - | 67 (44) | 20 (49) | 0.592 | 88 (27.1) | 22 (30.9) | 0.51 | | Previous PCI, n (%) | - | - | - | 22 (14.6) | 16 (39) | 0.030 | 274 (84.3) | 66 (92.9) | 0.06 | | Previous CABG, n (%) | - | - | - | 28 (18.2) | 11 (27.5) | 0.208 | 63 (19.4) | 23 (32.4) | 0.02 | | CKD, n (%) | - | - | - | - | - | - | - | - | - | | Procedural characteristic | es · | | | | | | | | | | Number of stents (n) | - | - | - | 2.7 | 3.2 | 0.001 | - | - | - | | J-CTO score | - | - | - | - | - | - | 2.6 | 3.9 | <0.000 | | Procedural duration
(min) | - | - | - | 120 | 203 | < 0.001 | 62.5 | 107.7 | <0.000 | | Outcomes | | | | | | | | | • | | Procedural success rate,
n (%) | 1456 (83.2) | 151 (64.5) | < 0.001 | - | 27 (65.8) | - | 286 (88) | 57 (80.3) | 0.07 | | Technical success rate, n | - | - | - | - | - | - | - | - | - | | Complications | | | | | | | | | | | Cardiac mortality, n | _ | - | _ | _ | _ | _ | _ | | _ | | (%) | | | | _ | | | _ | | | | All-cause mortality, n | 6 (0.3) in hospital | 1 (0.4) in
hospital | 0.8 | 14 (9.4) long
term | 8 (19.1) long
term | 0.107 | - | - | - | | MACE, n (%) | - | - | - | - | - | - | 37 (11.4) long
term | 7 (10.3) long term | NS | | MI, n (%) | 18 (1) in hospital | 5 (2.1) in hospital | 0.08 | 4 (2.8) long
term | 2 (6.3) long
term | 0.772 | - | - | - | | Stroke, n (%) | 1 (0.05) in hospital | 0 (0) in
hospital | 0.8 | - | - | - | - | - | - | | Emergent CABG, n (%) | 3 (0.2) in hospital | 0 (0) in
hospital | 0.5 | 3 (2) long term | 3 (8.5) long
term | 0.112 | - | - | - | | TVR, n (%) | 1 (0.05) in hospital | 0 (0) in
hospital | 0.8 | 41 (27) long
term | 18 (45.6) long
term | 0.009 | - | - | - | | TLR, n (%) | - | - | - | 39 (25.7) long
term | 18 (45.6) long
term | 0.006 | - | - | - | | Stent thrombosis, n (%) | 1 (0.05) in hospital | 0 (0) in
hospital | 0.8 | - | - | - | - | - | - | | Coronary dissection, n | - | -
- | - | - | - | - | - | - | - | | Coronary perforation, n (%) | 42 (2.1) in hospital | 11 (4.7) in
hospital | 0.04 | - | - | - | - | - | - | | Tamponade, n (%) | 9 (0.5) in hospital | 2 (0.8) in
hospital | 0.5 | - | - | | - | - | - | | Contrast nephropathy, n (%) | 15 (0.8) in hospital | 3 (1.2) in
hospital | 0.5 | - | - | - | - | - | - | | Bleeding, n (%) | - | - | - | - | _ | - | - | - | - | | Vascular access, n (%) | 12 (0.6) in hospital | 2 (0.8) in
hospital | 0.5 | - | - 1 (| - | - | - | - | |--|----------------------|-------------------------|------------------|------------------------|--------------------------|--------------|-------------------------|-------------------------|-------------| | | | Anteg | rade vs R | etrograde Appr | oach (cont'd) | | | | | | Study | Karmapali | otis et al (74) | | Ste | etler et al (75) | | Su | zuki et al (76) | | | Arms | Antegrade | Retrograd
e | P-
value | Antegrade | Retrograde | P-
value | Antegrade | Retrograde | P-
value | | Patients (n) | 745 | 531 | | 115 | 69 | | 1872 | 724 | | | CTO lesions (n) | 745 | 431 | | 115 | 69 | | 1872 | 724 | | | Characteristics | | | | | | | | | | | Mean age | 65.1 | 66.1 | 0.096 | 64.2 | 65.8 | 0.17 | 66.8 | 66.9 | 0.863 | | Male, n (%) | 609 (81.7) | 465 (87.5) | 0.005 | 113 (98.2) | 68 (98.6) | 0.87 | 1593 (85.1) | 640 (88.4) | 0.018 | | HTN, n (%) | 669 (89.8) | 474 (89.3) | 0.776 | 106 (92) | 61 (88.4) | 0.42 | 1460 (78) | 585 (80.8) | 0.12 | | Dyslipidemia, n (%) | 702 (94.2) | 502 (94.5) | 0.824 | 108 (93.8) | 64 (92.8) | 0.78 | 1425 (76.1) | 594 (82.1) | 0.001 | | Diabetes, n (%) | 343 (46) | 231 (43.5) | 0.386 | 75 (65.5) | 29 (42) | 0.0.001
9 | 841 (44.9) | 332 (45.8) | 0.35 | | Smoking, n (%) | 221 (29.7) | 147 (27.6) | 0.407 | 39 (33.9) | 27 (38.8) | 0.51 | 1086 (58) | 451 (62.3) | 0.057 | | Previous MI, n (%) | 295 (39.6) | 237 (44.6) | 0.077 | 45 (38.7) | 40 (58.8) | 0.0089 | 968 (51.7) | 371 (51.3) | 0.895 | | Previous PCI, n (%) | 453 (60.8) | 374 (70.4) | < 0.001 | 60 (52.2) | 41 (59.4) | 0.34 | 1157 (61.8) | 489 (67.5) | 0.007 | | Previous CABG, n (%) | 180 (24.1) | 253 (47.7) | < 0.001 | 27 (23.9) | 29 (42) | 0.0101 | 139 (7.4) | 68 (9.4) | 0.105 | | CKD, n (%) | - | - | - | - | - | - | - | - | - | | Procedural characteristic Number of stents (n) | | 2.0 | <0.001 | | | | | | | | J-CTO score | 2.3 2.1 | 2.9
3.1 | <0.001
<0.001 | 2.1 | 3 | <0.000 | 1.9 | 2.4 | <0.000 | | Procedural duration
(min) | 100 | 183 | <0.001 | 105 | 190 | <0.000 | 143.8 | 201.5 | <0.000 | | Outcomes |
 | | | | | | | | | Procedural success rate, n (%) | 695 (93.3) | 435 (81.9) | < 0.001 | 111 (96.5) | 57 (82.6) | 0.0014 | 1690 (90.3) | 615 (85) | <0.000
1 | | Technical success rate, n
(%) | 698 (93.7) | 450 (84.8) | < 0.001 | 113 (98.3) | 59 (85.5) | 0.0007 | 1703 (91) | 632 (87.3) | 0.006 | | Complications | | | | | | | | | | | Cardiac mortality, n (%) | - | - | - | - | - | - | - | - | - | | All-cause mortality, n | 1 (0.1) in hospital | 4 (0.8) in
hospital | 0.167 | - | - | - | 4 (0.2) in hospital | 3 (0.4) in
hospital | 0.362 | | MACE, n (%) | 8 (1.1) in hospital | 23 (4.3) in
hospital | < 0.001 | 2 (1.8) in
hospital | 3 (4.5) in hospital | 0.2853 | - | - | - | | MI, n (%) | 2 (0.3) in hospital | 11 (2.1) in
hospital | 0.003 | 4 (3.5) in hospital | 10 (14.5) in
hospital | 0.0064 | 15 (0.8) in
hospital | 14 (2) in
hospital | 0.018 | | Stroke, n (%) | 2 (0.3) in hospital | 2 (0.4) in
hospital | 0.999 | - | - | - | 4 (0.2) in
hospital | 2 (0.3) in
hospital | 0.628 | | Emergent CABG, n (%) | 0 (0) in hospital | 0 (0) in
hospital | - | - | - | - | 0 (0) in hospital | 0 (0) in hospital | - | | TVR, n (%) | - | - | - | - | - | - | - | - | - | | TLR, n (%) | - | - | - | - | - | - | - | - | - | | Stent thrombosis, n (%) | - | - | - | - | - | - | 4 (0.2) in
hospital | 1 (0.1) in
hospital | 1 | | Coronary dissection, n (%) | - | - | - | 1 (0.9) in
hospital | 2 (2.9) in
hospital | 0.5572 | - | - | - | | Coronary perforation, n (%) | 14 (1.9) in hospital | 29 (5.5) in
hospital | <0.001 | 1 (0.9) in
hospital | 2 (2.9) in
hospital | 0.5572 | 4 (0.2) in
hospital | 7 (0.9) in
hospital | <0.000 | | Tamponade, n (%) | 2 (0.3) in hospital | 7 (1.3) in hospital | 0.039 | 1 (0.9) in
hospital | 1 (1.5) in
hospital | 0.9999 | 4 (0.2) in
hospital | 7 (0.9) in
hospital | <0.000 | | Contrast nephropathy, n
(%) | - | - | - | - | - | - | 22 (1.2) in
hospital | 22 (3.1) in
hospital | 0.031 | | Bleeding, n (%) | - | - | - | - | - | - | - | - | - | | Vascular access, n (%) | - | - | - | - | - | - | 22 (1.2) in
hospital | 10 (1.4) in
hospital | 0.844 | | | | Aı | ntegrade v | s Unclassified A | Approach | | | | | | Study | Hsu e | t al (77) | | | | | | | | | Arms | Antegrade | Unclassifie
d Hybrid | P-
value | | | | | | | | Patients (n) | 59 | 46 | | | | | | | | | CTO lesions (n) | 69 | 50 | | | | | | | | | Characteristics | | | | | | | | |---------------------------|--------------------------|------------------------|-------|------------------|------------|-------|--| | Mean age | 65.05 | 65.04 | 0.998 | | | | | | Male, n (%) | 52 (88.1) | 41 (89.1) | 0.874 | | | | | | HTN, n (%) | 37 (62.7) | 26 (56.5) | 0.521 | | | | | | Dyslipidemia, n (%) | 37 (62.7) | 34 (73.9) | 0.224 | | | | | | Diabetes, n (%) | 29 (49.2) | 24 (52.2) | 0.759 | | | | | | | | | | | | | | | Smoking, n (%) | 18 (30.5) | 14 (30.4) | 0.994 | | | | | | Previous MI, n (%) | 13 (22) | 17 (37) | 0.093 | | | | | | Previous PCI, n (%) | 37 (62.7) | 36 (78.3) | 0.086 | | | | | | Previous CABG, n (%) | 3 (5.1) | 4 (8.7) | 0.462 | | | | | | CKD, n (%) | 16 (27.1) | 8 (17.4) | 0.239 | | | | | | Procedural characteristi | cs | | | | | | | | Number of stents (n) | 1.3 | 1.8 | 0.005 | | | | | | J-CTO score | - | - | - | | | | | | Procedural duration | - | | | | | | | | (min) | - | - | - | | | | | | | | | | | | | | | Outcomes | | | | | | | | | Procedural success rate, | 62 (89.9) | 40 (80) | 0.129 | | | | | | n (%) | | | | | | | | | Technical success rate, n | 65 (94.2) | 43 (86) | 0.127 | | | | | | (%) | • | | | | | | | | Complications | | | | | | | | | Cardiac mortality, n (%) | - | - | - | | | | | | All-cause mortality, n | 0 (0) In-hospital | 0 (0) In- | NS | | | | | | (%) | 0 (0) Long term | hospital 0 | NS | | | | | | (78) | o (o) Long term | 0 (0) Long | 110 | | | | | | | | | | | | | | | MACE, n (%) | | term | | | | | | | | | - 2 (6) I | | | | | | | MI, n (%) | 3 (4.3) In-hospital | 3 (6) In- | 0.684 | | | | | | | 0 (0) Long term | hospital | NS | | | | | | | | 0 (0) Long | | | | | | | | | term | | | | | | | Stroke, n (%) | 0 (0) In-hospital | 0 (0) In- | NS | | | | | | | 0 (0) Long term | hospital | NS | | | | | | | | 0 (0) Long | | | | | | | | | term | | | | | | | Emergent CABG, n (%) | - | - | - | | | | | | TVR, n (%) | 0 (0) In-hospital | 0 (0) In- | NS | | | | | | | 6 (16.7) Long term | hospital | 0.333 | | | | | | | ` , , | 6 (27.3) | | | | | | | | | Long term | | | | | | | TLR, n (%) | | - | | | | | | | Stent thrombosis, n (%) | | _ | | | | | | | Coronary dissection, n | 5 (7.2) in homital | | | | | | | | | 5 (7.2) in hospital | 3 (6) in | 0.789 | | | | | | (%) | E (7.0) 1 1 1 1 | hospital | 0.007 | | | | | | Coronary perforation, n | 5 (7.2) in hospital | 7 (14) in | 0.227 | | | | | | <u>(%)</u> | | hospital | | | | | | | Tamponade, n (%) | - | - | - | | | | | | Contrast nephropathy, n | 2 (7.2) in hospital | 0 (0) in | 0.225 | | | | | | (%) | | hospital | | | | | | | Bleeding, n (%) | - | - | - | | | | | | Vascular access, n (%) | - | - | - | | | | | | | | | ADR v | s non-ADR Appr | coach | | | | | | | | P | | | | | Study | Danek et al (78) | | | Danek et al (78) | | | | | | ADR | Non-ADR | P- | ADR | AWE only | P- | | | Arms | ADK | | | ADK | A WE OHLY | | | | | | (AWE + | value | | | value | | | | | retrograde | | | | | | | | 452 |) | | 0.40 | 510 | | | | Patients (n) | 452 | 836 | | 248 | 519 | | | | CTO lesions (n) | 458 | 855 | | 248 | 519 | | | | Characteristics | | | | | _ | | | | Mean age | 65.8 | 65.4 | 0.48 | 161 (64.6) | 339 (65.4) | 0.35 | | | Male, n (%) | 398 (88) | 685 (82) | 0.48 | 214 (86.4) | 411 (79.3) | 0.019 | | | HTN, n (%) | | | | | | | | | | 400 700 51 | | | | | | | | | 409 (90.5) | 744 (89) | 0.4 | 227 (91.6) | 461 (88.9) | 0.25 | | | Dyslipidemia, n (%) | 409 (90.5)
432 (95.5) | 744 (89)
782 (93.6) | 0.4 | 236 (95) | 487 (93.9) | 0.23 | | | Diabetes, n (%) | 208 (46.1) | 370 (44.3) | 0.55 | 116 (46.7) | 236 (45.4) | 0.75 | | |-----------------------------|----------------------|------------------------|---------|-------------------|------------------------|---------|--| | Smoking, n (%) | 141 (31.3) | 232 (27.8) | 0.33 | 80 (32.1) | 148 (28.5) | 0.002 | | | Previous MI, n (%) | 199 (44) | 339 (40.6) | 0.25 | 105 (42.3) | 202 (38.9) | 0.38 | | | Previous PCI, n (%) | 294 (65) | 542 (64.8) | 0.93 | 157 (63.3) | 311 (59.9) | 0.37 | | | Previous CABG, n (%) | 172 (38) | 270 (32.3) | 0.04 | 78 (31.3) | 110 (21.1) | 0.003 | | | CKD, n (%) | - | - | - | - | - | | | | Procedural characteristic | es | | | | | | | | Number of stents (n) | 2.9 | 2.3 | < 0.001 | 2.7 | 2.1 | < 0.001 | | | J-CTO score | 2.8 | 2.4 | < 0.001 | 2.5 | 1.9 | < 0.001 | | | Procedural duration | 156.5 | 111 | < 0.001 | 121 | 87 | < 0.001 | | | (min) | | | | | | | | | Outcomes | | | | | | | | | Procedural success rate, | 389 (85) | 775 (90.7) | 0.002 | 228 (91.8) | 488 (94.1) | 0.23 | | | n (%) | | | | | | | | | Technical success rate, n | 398 (86.9) | 785 (91.8) | 0.005 | 230 (92.7) | 489 (94.2) | 0.43 | | | (%) | | | | | | | | | Complications | | | | | | | | | Cardiac mortality, n | - | - | - | - | - | - | | | (%) | | | | | | | | | All-cause mortality, n | 2 (0.4) in hospital | 3 (0.4) in | 0.88 | 1 (0.4) in | 0 (0) in | 0.32 | | | (%) | | hospital | | hospital | hospital | | | | MACE, n (%) | 13 (2.9) in hospital | 19 (2.2) in | 0.42 | 5 (2.1) in | 3 (0.6) in | 0.12 | | | MT (0/) | 4 (0 0) 1 1 1 1 | hospital | 0.74 | hospital | hospital | 0.1 | | | MI, n (%) | 4 (0.9) in hospital | 9 (1.1) in | 0.74 | 2 (0.8) in | 0 (0) in | 0.1 | | | Stroke, n (%) | 0 (0) in hospital | hospital
4 (0.5) in | 0.14 | hospital | hospital
2 (0.4) in | >0.99 | | | Stroke, n (%) | 0 (0) in nospitai | 4 (0.5) in
hospital | 0.14 | 0 (0) in hospital | 2 (0.4) in
hospital | >0.99 | | | Emergent CABG, n (%) | | | _ | | - | | | | TVR, n (%) | | | | <u> </u> | | | | | TLR, n (%) | | - | | | | | | | Stent thrombosis, n (%) | | | | | | | | | Coronary dissection, n | | | | | | | | | (%) | | | | | | | | | Coronary perforation, n | _ | _ | _ | _ | _ | _ | | | (%) | | | | | | | | | Tamponade, n (%) | 8 (1.8) in hospital | 1(0.1) in | < 0.001 | 2 (0.8) in | 0 (0) in | 0.1 | | | • / . / | . , 1 | hospital | | hospital | hospital | | | | Contrast nephropathy, n (%) | - | - | - | - | - | - | | | Bleeding, n (%) | | - | | | | - | | | Vascular access, n (%) | - | - | - | - | - | - | | | | | | | | | | | ### Supplemental Appendix S1. Approaches ### **Antegrade Approach** This group includes 3 studies with a total of 310 patients (24-26). Patient demographics, clinical characteristics, and outcomes were reported in Supplemental Table S4. The mean age, calculated using a weighted average, was 58.9 years (range 56.5 – 62.6 years) and the predominant gender was male (82%). In one study where J-CTO score and procedural duration was reported, the average J-CTO score and procedural duration were 1.7 and 88.1 minutes, respectively (26). The mean procedural success rate was 65%. Only one study, performed by Akinseye et al., reported technical success rate of 90% (26). The incidence of peri-procedural all-cause mortality was 0.3%. Akinseye et al. was the only study reported a Cardiac death (0%), MACE (0%), TVR (0%), and coronary dissection (10%) of their study population. Incidence of myocardial infarction was 5.8%. Incidence of in-hospital stroke was 0.3%. Incidence of Coronary perforation and tamponade were 7.7% and 1%, respectively. #### **Retrograde Approach** 13 studies utilizing the retrograde approach were included in this review with a total of 3631 patients (27-39). The mean age was 61.8 years (range 55.4 – 65.8 years) and the predominant gender was male (87.5%). Diabetes, hypertension, previous MI, and previous CABG were prevalent in 35.5%, 76.4%, 56%, and 21% of the total population, respectively. In two studies where J-CTO score was reported, the average J-CTO score, calculated using a weighted
average, was 2.68. Five studies reported procedural duration with a weighted mean of 169.8 minutes. The mean procedural success rate was 77%. 4 studies reported technical success (mean 80.5%). Only one study, performed by Tsuchikane et al., reported cardiac death (0.2%). Among the 11 studies that reported in-hospital all-cause mortality, mean all-cause mortality was 0.3%. The mean of in-hospital MACE among 7 studies was 4%. Incidence of myocardial infarction was 2% and incidence of stroke was 0.1%. In studies that reported the incidence of TVR, coronary dissection, and perforation, the rate was 2%, 2.4%, and 2.9%, respectively. Amore detailed presentation of patient demographics, clinical characteristics, and outcomes were reported in Supplemental Table S4. #### **Dissection re-entry Approach** This group includes 2 studies with a total of 498 patients (40, 41). Patients demographic, clinical characteristics, and outcomes were reported in Supplemental Table S4. The mean age was 62.4 years, and the predominant gender was male (87.3%). In one study where J-CTO score and procedural duration was reported, the mean J-CTO score and procedural duration were 3.3 and 201 minutes, respectively. The mean procedural success rate was 91.7% and technical success rate was 98.8%. The incidence of peri-procedural all-cause mortality was 1.6%. Incidence of peri-procedural MACE was 6.4%, stroke 0.4%, MI 3.8%, coronary dissection 2.3%, and tamponade 1.4%. In the only study that reported TVR, stent thrombosis, and coronary perforation, the rate was 52.4%, 3.2%, and 9.7%, respectively.